target-s3
is inteded to be a multi-format/multi-cloud Singer target.
Build with the Meltano Target SDK.
{
"format": {
"format_type": "json",
"format_parquet": {
"validate": true|false
},
"format_json": {},
"format_csv": {}
},
"cloud_provider": {
"cloud_provider_type": "aws",
"aws": {
"aws_access_key_id": "test",
"aws_secret_access_key": "test",
"aws_region": "us-west-2",
"aws_profile_name": "test-profile",
"aws_bucket": "test-bucket",
"aws_endpoint_override": "http://localhost:4566"
}
},
"prefix": "path/to/output",
"stream_name_path_override": "StreamName",
"include_process_date": true|false,
"append_date_to_prefix": true|false,
"partition_name_enabled": true|false,
"use_raw_stream_name": true|false,
"append_date_to_prefix_grain": "day",
"append_date_to_filename": true|false,
"append_date_to_filename_grain": "microsecond",
"flattening_enabled": true|false,
"flattening_max_depth": int,
"max_batch_age": int,
"max_batch_size": int
}
format.format_parquet.validate
[Boolean
, default: False
] - this flag determines whether the data types of incoming data elements should be validated. When set True
, a schema is created from the first record and all subsequent records that don't match that data type are cast.
about
stream-maps
schema-flattening
This Singer target will automatically import any environment variables within the working directory's
.env
if the --config=ENV
is provided, such that config values will be considered if a matching
environment variable is set either in the terminal context or in the .env
file.
You can easily run target-s3
by itself or in a pipeline using Meltano.
target-s3 --version
target-s3 --help
# Test using the "Carbon Intensity" sample:
tap-carbon-intensity | target-s3 --config /path/to/target-s3-config.json
See the dev guide for more instructions on how to use the Meltano Singer SDK to develop your own Singer taps and targets.