Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Formalize PIEO Tree Compilation #35

Open
wants to merge 34 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 1 commit
Commits
Show all changes
34 commits
Select commit Hold shift + click to select a range
d15d288
Setup tex files
polybeandip Jul 1, 2024
593f850
Fill in initial defn
polybeandip Jul 7, 2024
fe3a3d4
Push pdf
polybeandip Jul 7, 2024
dca9d97
Setup structure and semantics
polybeandip Jul 17, 2024
e5f25ba
Define simulation
polybeandip Jul 17, 2024
2b77335
Fix well-formed defn
polybeandip Jul 17, 2024
737dbd8
Add main theorem
polybeandip Jul 17, 2024
d029089
Add projection scaffolding
polybeandip Jul 18, 2024
ece565b
Main theorem, projections, and more
polybeandip Jul 18, 2024
31eaa89
Prove Lemma 2.3
polybeandip Jul 19, 2024
284578a
Remove todonotes pkg
polybeandip Jul 19, 2024
978f26d
Prove diagram commutes
polybeandip Jul 19, 2024
5c3a46a
Prove Lemma 2.5
polybeandip Jul 19, 2024
35c429e
Prove Lemma 2.4
polybeandip Jul 22, 2024
06e752f
Factor main Theorem into Lemmas
polybeandip Jul 22, 2024
49e441a
Prove Lemma 4.6 (clone Lemma 5.7 from FA)
polybeandip Jul 23, 2024
d200333
Add well-formedness scaffolding
polybeandip Jul 23, 2024
7d945f6
Merge branch 'main' into pieo-trees
polybeandip Jul 23, 2024
eaaf315
Merge branch 'main' into pieo-trees
polybeandip Jul 23, 2024
f91d0cc
Typos: missing _f
polybeandip Jul 24, 2024
71eacf3
Well-formednes for pushing on PIFOs
KabirSamsi Jul 28, 2024
fb378e7
Lemma 2 for |.| on PIFO Trees
KabirSamsi Jul 28, 2024
abfdea6
Format and font consistency fixes
KabirSamsi Jul 28, 2024
26fbed6
Proof for Lemma 3.9.2, fixes from earlier
KabirSamsi Jul 29, 2024
bba1bf2
Fix well-formedness (again!)
polybeandip Jul 29, 2024
d880ade
Recompiled pdfs
KabirSamsi Jul 29, 2024
e4388db
Merged updates to well-formedness definition
KabirSamsi Jul 29, 2024
15415b6
Indent fixes
KabirSamsi Jul 29, 2024
7d35da8
PIEO Tree 2.2.1 proof
KabirSamsi Aug 1, 2024
747f485
Modified font and formatting
KabirSamsi Aug 1, 2024
4ffd1f3
Recompile notes.pdf
polybeandip Aug 1, 2024
0d7f274
Updated PIEO Tree Well Formedness Notes for pushing
KabirSamsi Aug 5, 2024
d9ee59c
Some notes syntax fixes
KabirSamsi Aug 7, 2024
715fd33
Bug fixes + recompilation
polybeandip Aug 10, 2024
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Binary file modified pieo-trees/notes.pdf
Binary file not shown.
23 changes: 18 additions & 5 deletions pieo-trees/notes.tex
Original file line number Diff line number Diff line change
Expand Up @@ -135,7 +135,7 @@ \section{Structure \& Semantics}
For PIEO $p$, entry $s \in S$, and predicate $f \in F$, we write
\begin{enumerate}
\item $|p|$ for the number of entries in $p$
\item $|p|_{s}$ for the number of times $s$ occurs in $p$
\item $|p|_{f}$ for the number of entries in $p$ satisfying $f$
\item $|p|_{s,f}$ for the number of times $s$ occurs in $p$ with associated $d \in D$ such that $f(d)$ holds
\end{enumerate}
\end{dfn}
Expand Down Expand Up @@ -225,19 +225,20 @@ \section{Structure \& Semantics}
\section{Well-Formedness}

\begin{dfn}
Define $|\cdot| : \PIEOTree(t) \to \mathbb N$ by
Fix $f \in \mathcal F$.
Define $|\cdot|_f : \PIEOTree(t) \to \mathbb N$ by
\begin{align*}
|\Leaf(p)| = |p| && |\Internal(qs, p)| = \sum_{i=1}^{|qs|} |qs[i]|
|\Leaf(p)| = |p|_f && |\Internal(qs, p)| = \sum_{i=1}^{|qs|} |qs[i]|_f
polybeandip marked this conversation as resolved.
Show resolved Hide resolved
\end{align*}

We say that $q \in \PIEOTree(t)$ is \emph{well-formed} w.r.t $f \in \mathcal F$, denoted $\vdash_f q$, if it adheres to the following rules.
We say that $q \in \PIEOTree(t)$ is \emph{well-formed} w.r.t $f$, denoted $\vdash_f q$, if it adheres to the following rules.
\begin{align*}
\axiom{}
{\vdash_f \Leaf(p)}
&&
\inference{}
{
\forall i \in [1, |qs|], \; \vdash_f qs[i] \land |p|_{i, f} = |qs[i]|
\forall i \in [1, |qs|], \; \vdash_f qs[i] \land |p|_{i, f} = |qs[i]|_f
}
{
\vdash_f \Internal(qs, p)
Expand All @@ -247,6 +248,18 @@ \section{Well-Formedness}
We say $q$ is well-formed, denoted $\vdash q$, if there exists $f \in \mathcal F$ such that, for all $f^\prime \geq f$, $\vdash_{f^\prime} q$.
\end{dfn}

\begin{thm}
Let $t \in \Topo$, $\pkt \in \Pkt$, $d \in \Data$, $f \in \mathcal F$, and $q \in \PIEOTree(t)$ such that $\vdash q$.
\begin{enumerate}
\item If $pt \in \Path(t)$, then $\push(q, \pkt, d, pt)$ is well-defined and $\vdash \push(q, \pkt, d, pt)$.
\item If $|q|_f > 0$, then $\pop(q, f)$ is well-defined and $\vdash q^\prime$, where $\pop(q, f) = (\pkt, q^\prime)$.
\end{enumerate}
\end{thm}

\begin{proof}
\textcolor{red}{TBD}
\end{proof}

\newpage

\section{Projection}
Expand Down