-
Notifications
You must be signed in to change notification settings - Fork 3.1k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Removed Mentions of Mask RCNN #8853
base: develop
Are you sure you want to change the base?
Changes from 7 commits
8fb569e
822a71d
b565d45
1a4075e
72a4d55
e915680
03b4d0d
0049ae5
f5416ab
9085a9c
05b160b
5ef4b4f
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -201,11 +201,9 @@ see {{< ilink "/docs/manual/advanced/automatic-annotation" "Automatic annotation | |
|
||
| Model | Description | | ||
| ------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | | ||
| Mask RCNN | The model generates polygons for each instance of an object in the image. <br><br> For more information, see: <li>[GitHub: Mask RCNN](https://github.com/matterport/Mask_RCNN) <li>[Paper: Mask RCNN](https://arxiv.org/pdf/1703.06870.pdf) | | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. No need to delete this line |
||
| Faster RCNN | The model generates bounding boxes for each instance of an object in the image. <br>In this model, RPN and Fast R-CNN are combined into a single network. <br><br> For more information, see: <li>[GitHub: Faster RCNN](https://github.com/ShaoqingRen/faster_rcnn) <li>[Paper: Faster RCNN](https://arxiv.org/pdf/1506.01497.pdf) | | ||
| YOLO v3 | YOLO v3 is a family of object detection architectures and models pre-trained on the COCO dataset. <br><br> For more information, see: <li>[GitHub: YOLO v3](https://github.com/ultralytics/yolov3) <li>[Site: YOLO v3](https://docs.ultralytics.com/#yolov3) <li>[Paper: YOLO v3](https://arxiv.org/pdf/1804.02767v1.pdf) | | ||
| Semantic segmentation for ADAS | This is a segmentation network to classify each pixel into 20 classes. <br><br> For more information, see: <li>[Site: ADAS](https://docs.openvino.ai/2019_R1/_semantic_segmentation_adas_0001_description_semantic_segmentation_adas_0001.html) | | ||
| Mask RCNN with Tensorflow | Mask RCNN version with Tensorflow. The model generates polygons for each instance of an object in the image. <br><br> For more information, see: <li>[GitHub: Mask RCNN](https://github.com/matterport/Mask_RCNN) <li>[Paper: Mask RCNN](https://arxiv.org/pdf/1703.06870.pdf) | | ||
| Faster RCNN with Tensorflow | Faster RCNN version with Tensorflow. The model generates bounding boxes for each instance of an object in the image. <br>In this model, RPN and Fast R-CNN are combined into a single network. <br><br> For more information, see: <li>[Site: Faster RCNN with Tensorflow](https://docs.openvino.ai/2021.4/omz_models_model_faster_rcnn_inception_v2_coco.html) <li>[Paper: Faster RCNN](https://arxiv.org/pdf/1506.01497.pdf) | | ||
| RetinaNet | Pytorch implementation of RetinaNet object detection. <br> <br><br> For more information, see: <li>[Specification: RetinaNet](https://paperswithcode.com/lib/detectron2/retinanet) <li>[Paper: RetinaNet](https://arxiv.org/pdf/1708.02002.pdf)<li>[Documentation: RetinaNet](https://detectron2.readthedocs.io/en/latest/tutorials/training.html) | | ||
| Face Detection | Face detector based on MobileNetV2 as a backbone for indoor and outdoor scenes shot by a front-facing camera. <br> <br><br> For more information, see: <li>[Site: Face Detection 0205](https://docs.openvino.ai/latest/omz_models_model_face_detection_0205.html) | | ||
|
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -24,8 +24,7 @@ that can _perfectly_ annotate 50% of your data equates to reducing manual annota | |
Since we know DL models can help us to annotate faster, how then do we use them? | ||
In CVAT all such DL models are implemented as serverless functions using the [Nuclio][nuclio-homepage] | ||
serverless platform. There are multiple implemented functions that can be | ||
found in the [serverless][cvat-builtin-serverless] directory such as _Mask RCNN, | ||
klakhov marked this conversation as resolved.
Show resolved
Hide resolved
|
||
Faster RCNN, SiamMask, Inside Outside Guidance, Deep Extreme Cut_, etc. | ||
found in the [serverless][cvat-builtin-serverless] directory such as _Faster RCNN, SiamMask, Inside Outside Guidance, Deep Extreme Cut_, etc. | ||
Follow [the installation guide][cvat-auto-annotation-guide] to build and deploy | ||
these serverless functions. See [the user guide][cvat-ai-tools-user-guide] to | ||
understand how to use these functions in the UI to automatically annotate data. | ||
|
@@ -161,7 +160,6 @@ Finally you will get bounding boxes. | |
![SiamMask results](/images/siammask_results.gif) | ||
|
||
`SiamMask` model is more optimized to work on Nvidia GPUs. | ||
For more information about deploying the model for the GPU, [read on](#objects-segmentation-using-mask-rcnn). | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Lets not remove documentation about GPU functions deployment. As a bit outdated documentation is better than no docs at all. |
||
|
||
### Object detection using YOLO-v3 | ||
|
||
|
@@ -215,61 +213,6 @@ CVAT will run the serverless function on every frame of the task and submit | |
results directly into database. For more details please read | ||
[the guide][cvat-auto-annotation-user-guide]. | ||
|
||
### Objects segmentation using Mask-RCNN | ||
|
||
If you have a detector, which returns polygons, you can segment objects. One | ||
of such detectors is `Mask-RCNN`. There are several implementations of the | ||
detector available out of the box: | ||
|
||
- `serverless/openvino/omz/public/mask_rcnn_inception_resnet_v2_atrous_coco` is | ||
optimized using [Intel OpenVINO framework][intel-openvino-url] and works well | ||
if it is run on an Intel CPU. | ||
- `serverless/tensorflow/matterport/mask_rcnn/` is optimized for GPU. | ||
|
||
The deployment process for a serverless function optimized for GPU is similar. | ||
Just need to run `serverless/deploy_gpu.sh` script. It runs mostly the same | ||
commands but utilize `function-gpu.yaml` configuration file instead of | ||
`function.yaml` internally. See next sections if you want to understand the | ||
difference. | ||
|
||
_Note: Please do not run several GPU functions at the same time. In many cases it | ||
will not work out of the box. For now you should manually schedule different | ||
functions on different GPUs and it requires source code modification. Nuclio | ||
autoscaler does not support the local platform (docker)._ | ||
|
||
<details> | ||
<summary> | ||
|
||
```bash | ||
serverless/deploy_gpu.sh serverless/tensorflow/matterport/mask_rcnn | ||
``` | ||
|
||
</summary> | ||
|
||
``` | ||
Deploying serverless/tensorflow/matterport/mask_rcnn function... | ||
21.07.12 16:48:48.995 nuctl (I) Deploying function {"name": ""} | ||
21.07.12 16:48:48.995 nuctl (I) Building {"versionInfo": "Label: 1.5.16, Git commit: ae43a6a560c2bec42d7ccfdf6e8e11a1e3cc3774, OS: linux, Arch: amd64, Go version: go1.14.3", "name": ""} | ||
21.07.12 16:48:49.356 nuctl (I) Cleaning up before deployment {"functionName": "tf-matterport-mask-rcnn"} | ||
21.07.12 16:48:49.470 nuctl (I) Function already exists, deleting function containers {"functionName": "tf-matterport-mask-rcnn"} | ||
21.07.12 16:48:50.247 nuctl (I) Staging files and preparing base images | ||
21.07.12 16:48:50.248 nuctl (I) Building processor image {"imageName": "cvat/tf.matterport.mask_rcnn:latest"} | ||
21.07.12 16:48:50.249 nuctl.platform.docker (I) Pulling image {"imageName": "quay.io/nuclio/handler-builder-python-onbuild:1.5.16-amd64"} | ||
21.07.12 16:48:53.674 nuctl.platform.docker (I) Pulling image {"imageName": "quay.io/nuclio/uhttpc:0.0.1-amd64"} | ||
21.07.12 16:48:57.424 nuctl.platform (I) Building docker image {"image": "cvat/tf.matterport.mask_rcnn:latest"} | ||
21.07.12 16:48:57.763 nuctl.platform (I) Pushing docker image into registry {"image": "cvat/tf.matterport.mask_rcnn:latest", "registry": ""} | ||
21.07.12 16:48:57.764 nuctl.platform (I) Docker image was successfully built and pushed into docker registry {"image": "cvat/tf.matterport.mask_rcnn:latest"} | ||
21.07.12 16:48:57.764 nuctl (I) Build complete {"result": {"Image":"cvat/tf.matterport.mask_rcnn:latest","UpdatedFunctionConfig":{"metadata":{"name":"tf-matterport-mask-rcnn","namespace":"nuclio","labels":{"nuclio.io/project-name":"cvat"},"annotations":{"framework":"tensorflow","name":"Mask RCNN via Tensorflow","spec":"[\n { \"id\": 0, \"name\": \"BG\" },\n { \"id\": 1, \"name\": \"person\" },\n { \"id\": 2, \"name\": \"bicycle\" },\n { \"id\": 3, \"name\": \"car\" },\n { \"id\": 4, \"name\": \"motorcycle\" },\n { \"id\": 5, \"name\": \"airplane\" },\n { \"id\": 6, \"name\": \"bus\" },\n { \"id\": 7, \"name\": \"train\" },\n { \"id\": 8, \"name\": \"truck\" },\n { \"id\": 9, \"name\": \"boat\" },\n { \"id\": 10, \"name\": \"traffic_light\" },\n { \"id\": 11, \"name\": \"fire_hydrant\" },\n { \"id\": 12, \"name\": \"stop_sign\" },\n { \"id\": 13, \"name\": \"parking_meter\" },\n { \"id\": 14, \"name\": \"bench\" },\n { \"id\": 15, \"name\": \"bird\" },\n { \"id\": 16, \"name\": \"cat\" },\n { \"id\": 17, \"name\": \"dog\" },\n { \"id\": 18, \"name\": \"horse\" },\n { \"id\": 19, \"name\": \"sheep\" },\n { \"id\": 20, \"name\": \"cow\" },\n { \"id\": 21, \"name\": \"elephant\" },\n { \"id\": 22, \"name\": \"bear\" },\n { \"id\": 23, \"name\": \"zebra\" },\n { \"id\": 24, \"name\": \"giraffe\" },\n { \"id\": 25, \"name\": \"backpack\" },\n { \"id\": 26, \"name\": \"umbrella\" },\n { \"id\": 27, \"name\": \"handbag\" },\n { \"id\": 28, \"name\": \"tie\" },\n { \"id\": 29, \"name\": \"suitcase\" },\n { \"id\": 30, \"name\": \"frisbee\" },\n { \"id\": 31, \"name\": \"skis\" },\n { \"id\": 32, \"name\": \"snowboard\" },\n { \"id\": 33, \"name\": \"sports_ball\" },\n { \"id\": 34, \"name\": \"kite\" },\n { \"id\": 35, \"name\": \"baseball_bat\" },\n { \"id\": 36, \"name\": \"baseball_glove\" },\n { \"id\": 37, \"name\": \"skateboard\" },\n { \"id\": 38, \"name\": \"surfboard\" },\n { \"id\": 39, \"name\": \"tennis_racket\" },\n { \"id\": 40, \"name\": \"bottle\" },\n { \"id\": 41, \"name\": \"wine_glass\" },\n { \"id\": 42, \"name\": \"cup\" },\n { \"id\": 43, \"name\": \"fork\" },\n { \"id\": 44, \"name\": \"knife\" },\n { \"id\": 45, \"name\": \"spoon\" },\n { \"id\": 46, \"name\": \"bowl\" },\n { \"id\": 47, \"name\": \"banana\" },\n { \"id\": 48, \"name\": \"apple\" },\n { \"id\": 49, \"name\": \"sandwich\" },\n { \"id\": 50, \"name\": \"orange\" },\n { \"id\": 51, \"name\": \"broccoli\" },\n { \"id\": 52, \"name\": \"carrot\" },\n { \"id\": 53, \"name\": \"hot_dog\" },\n { \"id\": 54, \"name\": \"pizza\" },\n { \"id\": 55, \"name\": \"donut\" },\n { \"id\": 56, \"name\": \"cake\" },\n { \"id\": 57, \"name\": \"chair\" },\n { \"id\": 58, \"name\": \"couch\" },\n { \"id\": 59, \"name\": \"potted_plant\" },\n { \"id\": 60, \"name\": \"bed\" },\n { \"id\": 61, \"name\": \"dining_table\" },\n { \"id\": 62, \"name\": \"toilet\" },\n { \"id\": 63, \"name\": \"tv\" },\n { \"id\": 64, \"name\": \"laptop\" },\n { \"id\": 65, \"name\": \"mouse\" },\n { \"id\": 66, \"name\": \"remote\" },\n { \"id\": 67, \"name\": \"keyboard\" },\n { \"id\": 68, \"name\": \"cell_phone\" },\n { \"id\": 69, \"name\": \"microwave\" },\n { \"id\": 70, \"name\": \"oven\" },\n { \"id\": 71, \"name\": \"toaster\" },\n { \"id\": 72, \"name\": \"sink\" },\n { \"id\": 73, \"name\": \"refrigerator\" },\n { \"id\": 74, \"name\": \"book\" },\n { \"id\": 75, \"name\": \"clock\" },\n { \"id\": 76, \"name\": \"vase\" },\n { \"id\": 77, \"name\": \"scissors\" },\n { \"id\": 78, \"name\": \"teddy_bear\" },\n { \"id\": 79, \"name\": \"hair_drier\" },\n { \"id\": 80, \"name\": \"toothbrush\" }\n]\n","type":"detector"}},"spec":{"description":"Mask RCNN optimized for GPU","handler":"main:handler","runtime":"python:3.6","env":[{"name":"MASK_RCNN_DIR","value":"/opt/nuclio/Mask_RCNN"}],"resources":{"limits":{"nvidia.com/gpu":"1"}},"image":"cvat/tf.matterport.mask_rcnn:latest","targetCPU":75,"triggers":{"myHttpTrigger":{"class":"","kind":"http","name":"myHttpTrigger","maxWorkers":1,"workerAvailabilityTimeoutMilliseconds":10000,"attributes":{"maxRequestBodySize":33554432}}},"volumes":[{"volume":{"name":"volume-1","hostPath":{"path":"/home/nmanovic/Workspace/cvat/serverless/common"}},"volumeMount":{"name":"volume-1","mountPath":"/opt/nuclio/common"}}],"build":{"functionConfigPath":"serverless/tensorflow/matterport/mask_rcnn/nuclio/function-gpu.yaml","image":"cvat/tf.matterport.mask_rcnn","baseImage":"tensorflow/tensorflow:1.15.5-gpu-py3","directives":{"postCopy":[{"kind":"WORKDIR","value":"/opt/nuclio"},{"kind":"RUN","value":"apt update \u0026\u0026 apt install --no-install-recommends -y git curl"},{"kind":"RUN","value":"git clone --depth 1 https://github.com/matterport/Mask_RCNN.git"},{"kind":"RUN","value":"curl -L https://github.com/matterport/Mask_RCNN/releases/download/v2.0/mask_rcnn_coco.h5 -o Mask_RCNN/mask_rcnn_coco.h5"},{"kind":"RUN","value":"pip3 install numpy cython pyyaml keras==2.1.0 scikit-image Pillow"}]},"codeEntryType":"image"},"platform":{"attributes":{"mountMode":"volume","restartPolicy":{"maximumRetryCount":3,"name":"always"}}},"readinessTimeoutSeconds":60,"securityContext":{},"eventTimeout":"30s"}}}} | ||
21.07.12 16:48:59.071 nuctl.platform (I) Waiting for function to be ready {"timeout": 60} | ||
21.07.12 16:49:00.437 nuctl (I) Function deploy complete {"functionName": "tf-matterport-mask-rcnn", "httpPort": 49155} | ||
``` | ||
|
||
</details> | ||
|
||
Now you should be able to annotate objects using segmentation masks. | ||
|
||
![Mask RCNN results](/images/mask_rcnn_results.jpg) | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Please check that this image is not used anywhere else and also delete it. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I don't think that it is not used anywhere as I searched the whole website when I was removing mentions of mask rcnn I searched the whole website There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Ok, great. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
I am still getting familiar with codebase, I would do it by tomorrow |
||
|
||
## Adding your own DL models | ||
|
||
### Choose a DL model | ||
|
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thist model was not removed
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Once again, this function is not removed.