-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #2 from databricks/setup-genie-core
Create Genie API wrapper
- Loading branch information
Showing
2 changed files
with
257 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,116 @@ | ||
import logging | ||
import time | ||
from datetime import datetime | ||
from typing import Union | ||
|
||
import pandas as pd | ||
from databricks.sdk import WorkspaceClient | ||
|
||
|
||
def _parse_query_result(resp) -> Union[str, pd.DataFrame]: | ||
columns = resp["manifest"]["schema"]["columns"] | ||
header = [str(col["name"]) for col in columns] | ||
rows = [] | ||
output = resp["result"] | ||
if not output: | ||
return "EMPTY" | ||
|
||
for item in resp["result"]["data_typed_array"]: | ||
row = [] | ||
for column, value in zip(columns, item["values"]): | ||
type_name = column["type_name"] | ||
str_value = value.get("str", None) | ||
if str_value is None: | ||
row.append(None) | ||
continue | ||
|
||
if type_name in ["INT", "LONG", "SHORT", "BYTE"]: | ||
row.append(int(str_value)) | ||
elif type_name in ["FLOAT", "DOUBLE", "DECIMAL"]: | ||
row.append(float(str_value)) | ||
elif type_name == "BOOLEAN": | ||
row.append(str_value.lower() == "true") | ||
elif type_name == "DATE": | ||
row.append(datetime.strptime(str_value[:10], "%Y-%m-%d").date()) | ||
elif type_name == "TIMESTAMP": | ||
row.append(datetime.strptime(str_value[:10], "%Y-%m-%d").date()) | ||
elif type_name == "BINARY": | ||
row.append(bytes(str_value, "utf-8")) | ||
else: | ||
row.append(str_value) | ||
|
||
rows.append(row) | ||
|
||
query_result = pd.DataFrame(rows, columns=header).to_string() | ||
return query_result | ||
|
||
|
||
class Genie: | ||
def __init__(self, space_id): | ||
self.space_id = space_id | ||
workspace_client = WorkspaceClient() | ||
self.genie = workspace_client.genie | ||
self.headers = { | ||
"Accept": "application/json", | ||
"Content-Type": "application/json", | ||
} | ||
|
||
def start_conversation(self, content): | ||
resp = self.genie._api.do( | ||
"POST", | ||
f"/api/2.0/genie/spaces/{self.space_id}/start-conversation", | ||
body={"content": content}, | ||
headers=self.headers, | ||
) | ||
return resp | ||
|
||
def create_message(self, conversation_id, content): | ||
resp = self.genie._api.do( | ||
"POST", | ||
f"/api/2.0/genie/spaces/{self.space_id}/conversations/{conversation_id}/messages", | ||
body={"content": content}, | ||
headers=self.headers, | ||
) | ||
return resp | ||
|
||
def poll_for_result(self, conversation_id, message_id): | ||
def poll_result(): | ||
while True: | ||
resp = self.genie._api.do( | ||
"GET", | ||
f"/api/2.0/genie/spaces/{self.space_id}/conversations/{conversation_id}/messages/{message_id}", | ||
headers=self.headers, | ||
) | ||
if resp["status"] == "EXECUTING_QUERY": | ||
sql = next(r for r in resp["attachments"] if "query" in r)["query"]["query"] | ||
logging.debug(f"SQL: {sql}") | ||
return poll_query_results() | ||
elif resp["status"] == "COMPLETED": | ||
return next(r for r in resp["attachments"] if "text" in r)["text"]["content"] | ||
else: | ||
logging.debug(f"Waiting...: {resp['status']}") | ||
time.sleep(5) | ||
|
||
def poll_query_results(): | ||
while True: | ||
resp = self.genie._api.do( | ||
"GET", | ||
f"/api/2.0/genie/spaces/{self.space_id}/conversations/{conversation_id}/messages/{message_id}/query-result", | ||
headers=self.headers, | ||
)["statement_response"] | ||
state = resp["status"]["state"] | ||
if state == "SUCCEEDED": | ||
return _parse_query_result(resp) | ||
elif state == "RUNNING" or state == "PENDING": | ||
logging.debug("Waiting for query result...") | ||
time.sleep(5) | ||
else: | ||
logging.debug(f"No query result: {resp['state']}") | ||
return None | ||
|
||
return poll_result() | ||
|
||
def ask_question(self, question): | ||
resp = self.start_conversation(question) | ||
# TODO (prithvi): return the query and the result | ||
return self.poll_for_result(resp["conversation_id"], resp["message_id"]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,141 @@ | ||
from datetime import datetime | ||
from unittest.mock import patch | ||
|
||
import pandas as pd | ||
import pytest | ||
|
||
from databricks_ai_bridge.genie import Genie, _parse_query_result | ||
|
||
|
||
@pytest.fixture | ||
def mock_workspace_client(): | ||
with patch("databricks_ai_bridge.genie.WorkspaceClient") as MockWorkspaceClient: | ||
mock_client = MockWorkspaceClient.return_value | ||
yield mock_client | ||
|
||
|
||
@pytest.fixture | ||
def genie(mock_workspace_client): | ||
return Genie(space_id="test_space_id") | ||
|
||
|
||
def test_start_conversation(genie, mock_workspace_client): | ||
mock_workspace_client.genie._api.do.return_value = {"conversation_id": "123"} | ||
response = genie.start_conversation("Hello") | ||
assert response == {"conversation_id": "123"} | ||
mock_workspace_client.genie._api.do.assert_called_once_with( | ||
"POST", | ||
"/api/2.0/genie/spaces/test_space_id/start-conversation", | ||
body={"content": "Hello"}, | ||
headers=genie.headers, | ||
) | ||
|
||
|
||
def test_create_message(genie, mock_workspace_client): | ||
mock_workspace_client.genie._api.do.return_value = {"message_id": "456"} | ||
response = genie.create_message("123", "Hello again") | ||
assert response == {"message_id": "456"} | ||
mock_workspace_client.genie._api.do.assert_called_once_with( | ||
"POST", | ||
"/api/2.0/genie/spaces/test_space_id/conversations/123/messages", | ||
body={"content": "Hello again"}, | ||
headers=genie.headers, | ||
) | ||
|
||
|
||
def test_poll_for_result_completed(genie, mock_workspace_client): | ||
mock_workspace_client.genie._api.do.side_effect = [ | ||
{"status": "COMPLETED", "attachments": [{"text": {"content": "Result"}}]}, | ||
] | ||
result = genie.poll_for_result("123", "456") | ||
assert result == "Result" | ||
|
||
|
||
def test_poll_for_result_executing_query(genie, mock_workspace_client): | ||
mock_workspace_client.genie._api.do.side_effect = [ | ||
{"status": "EXECUTING_QUERY", "attachments": [{"query": {"query": "SELECT *"}}]}, | ||
{ | ||
"statement_response": { | ||
"status": {"state": "SUCCEEDED"}, | ||
"manifest": {"schema": {"columns": []}}, | ||
"result": { | ||
"data_typed_array": [], | ||
}, | ||
} | ||
}, | ||
] | ||
result = genie.poll_for_result("123", "456") | ||
assert result == pd.DataFrame().to_string() | ||
|
||
|
||
def test_ask_question(genie, mock_workspace_client): | ||
mock_workspace_client.genie._api.do.side_effect = [ | ||
{"conversation_id": "123", "message_id": "456"}, | ||
{"status": "COMPLETED", "attachments": [{"text": {"content": "Answer"}}]}, | ||
] | ||
result = genie.ask_question("What is the meaning of life?") | ||
assert result == "Answer" | ||
|
||
|
||
def test_parse_query_result_empty(): | ||
resp = {"manifest": {"schema": {"columns": []}}, "result": None} | ||
result = _parse_query_result(resp) | ||
assert result == "EMPTY" | ||
|
||
|
||
def test_parse_query_result_with_data(): | ||
resp = { | ||
"manifest": { | ||
"schema": { | ||
"columns": [ | ||
{"name": "id", "type_name": "INT"}, | ||
{"name": "name", "type_name": "STRING"}, | ||
{"name": "created_at", "type_name": "TIMESTAMP"}, | ||
] | ||
} | ||
}, | ||
"result": { | ||
"data_typed_array": [ | ||
{"values": [{"str": "1"}, {"str": "Alice"}, {"str": "2023-10-01T00:00:00Z"}]}, | ||
{"values": [{"str": "2"}, {"str": "Bob"}, {"str": "2023-10-02T00:00:00Z"}]}, | ||
] | ||
}, | ||
} | ||
result = _parse_query_result(resp) | ||
expected_df = pd.DataFrame( | ||
{ | ||
"id": [1, 2], | ||
"name": ["Alice", "Bob"], | ||
"created_at": [datetime(2023, 10, 1).date(), datetime(2023, 10, 2).date()], | ||
} | ||
) | ||
assert result == expected_df.to_string() | ||
|
||
|
||
def test_parse_query_result_with_null_values(): | ||
resp = { | ||
"manifest": { | ||
"schema": { | ||
"columns": [ | ||
{"name": "id", "type_name": "INT"}, | ||
{"name": "name", "type_name": "STRING"}, | ||
{"name": "created_at", "type_name": "TIMESTAMP"}, | ||
] | ||
} | ||
}, | ||
"result": { | ||
"data_typed_array": [ | ||
{"values": [{"str": "1"}, {"str": None}, {"str": "2023-10-01T00:00:00Z"}]}, | ||
{"values": [{"str": "2"}, {"str": "Bob"}, {"str": None}]}, | ||
] | ||
}, | ||
} | ||
result = _parse_query_result(resp) | ||
expected_df = pd.DataFrame( | ||
{ | ||
"id": [1, 2], | ||
"name": [None, "Bob"], | ||
"created_at": [datetime(2023, 10, 1).date(), None], | ||
} | ||
) | ||
assert result == expected_df.to_string() |