Skip to content

Commit

Permalink
Extract from notebook
Browse files Browse the repository at this point in the history
Add comments
  • Loading branch information
DnzzL committed Feb 13, 2023
1 parent d5b3154 commit ecf17c6
Show file tree
Hide file tree
Showing 5 changed files with 336 additions and 1 deletion.
86 changes: 86 additions & 0 deletions bechdelai/audio/gender_identifier.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
import pandas as pd
import speech_recognition as sr
from dotenv import load_dotenv
from inaSpeechSegmenter import Segmenter


class GenderAudioIdentifier:
def __init__(self, path_to_file, path_to_audio):
self.title = path_to_file.split(sep='\\')[-1].split(sep='.')[0]
self.media = path_to_file
self.audio = path_to_audio
self.gendered_audio_seg = self.segment() # Dataframe
self.dialogues = self.run_speech_to_text()
self.speaking_time = self.compute_speaking_time_allocation()

def __str__(self):
return "Film : {}".format(self.title)

def __repr__(self):
return self.title

def segment(self):
seg = Segmenter(vad_engine='sm', energy_ratio=0.05)
# energy ratio : the higher, the more selective ; vad_engine : works better with sm than smn
segment = seg(self.media)
return pd.DataFrame(list(filter(lambda x: x[0] == 'male' or x[0] == 'female', segment)),
columns=['gender', 'start', 'end'])

def search_gender_tag(self, time: int): # Give a time in seconds
gender = None
if time > self.gendered_audio_seg['end'].tail(1).item():
return None
for i in self.gendered_audio_seg.index:
if time > self.gendered_audio_seg['start'][i]:
if time < self.gendered_audio_seg['end'][i]:
gender = self.gendered_audio_seg['gender'][i]
if time > self.gendered_audio_seg['end'][i]:
pass
return gender

def compute_speaking_time_allocation(self):
speaking_time = {'male': 0, 'female': 0}
dif = pd.Series(self.gendered_audio_seg['end'] - self.gendered_audio_seg['start'], name='time_frame')
totaldf = pd.concat([self.gendered_audio_seg['gender'], dif], axis=1)
for i in totaldf.index:
if totaldf['gender'][i] == 'male':
speaking_time['male'] += float(totaldf['time_frame'][i])
if totaldf['gender'][i] == 'female':
speaking_time['female'] += float(totaldf['time_frame'][i])
return speaking_time

def decode_speech(self, start_time=None, end_time=None, language="en-US"):
r = sr.Recognizer()
# r.pause_threshold = 3
# r.dynamic_energy_adjustment_damping = 0.5
# language can be "fr-FR"

with sr.WavFile(self.audio) as source:
if start_time is None and end_time is None:
audio_text = r.record(source)
else:
audio_text = r.record(source, duration=end_time - start_time, offset=start_time)

# recognize_() method will throw a request error if the API is unreachable, hence using exception handling
try:
# using google speech recognition
text = r.recognize_google(audio_text, language=language)
print('Converting audio transcripts into text ...')
return text

except:
print('Sorry.. run again...')

def run_speech_to_text(self):
transcript = []
for i in self.gendered_audio_seg.index:
transcript.append(self.decode_speech(start_time=self.gendered_audio_seg['start'][i],
end_time=self.gendered_audio_seg['end'][i],
language='fr-FR'))
transcription = pd.concat([self.gendered_audio_seg['gender'], pd.Series(transcript, name="transcription")],
axis=1)
return transcription

def export_to_csv(self, file_path: str):
result = pd.concat([self.gendered_audio_seg, self.dialogues['transcription']], axis=1)
result.to_csv(path_or_buf=file_path, sep=";", header=True, index=False)
37 changes: 37 additions & 0 deletions bechdelai/audio/speech_recognition.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
from transformers import pipeline


class SpeechRecognition:
"""Speech recognition model for audio files."""

def __init__(self, model_name="openai/whisper-small"):
"""Initialize speech recognition model.
Args:
language (str): target language
task (str): transcribe for same language or translate to another language
model_name (str): Whisper model name. Defaults to "openai/whisper-small".
"""
self.pipe = pipeline(
task="automatic-speech-recognition",
model=model_name,
chunk_length_s=30,
stride_length_s=(5, 5),
return_timestamps=True,
)

def transcribe(self, audio_path, language, task="transcribe"):
"""Transcribe audio file.
Args:
audio_path (): Path to audio file
language (str): target language
task (str): transcribe for same language or translate to another language
Returns:
Dict: Transcribed text
"""
self.pipe.model.config.forced_decoder_ids = (
self.pipe.tokenizer.get_decoder_prompt_ids(language=language, task=task)
)
return self.pipe(audio_path)
50 changes: 50 additions & 0 deletions bechdelai/audio/utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
import os

import moviepy.editor as mp
from moviepy.video.io.ffmpeg_tools import ffmpeg_extract_subclip


def cut_and_save(movie_path: str, start: float, end: float, target_name: str) -> None:
"""This function cuts a video from the start to the end time and saves it as target_name.
Args:
movie_path (str): The path to the video file.
start (float): The start time in seconds.
end (float): The end time in seconds.
target_name (str): The file name of the new video file.
Returns:
None
"""
return ffmpeg_extract_subclip(movie_path, start, end, targetname=target_name)


def import_as_clip(path_to_video: str) -> mp.VideoFileClip:
"""Imports a video file as a VideoFileClip object.
Args:
path_to_video (str): Path to a video file.
Returns:
mp.VideoFileClip: VideoFileClip object.
"""
return mp.VideoFileClip(path_to_video)


# Splits a file into its individual parts using spleeter
# Does not work above 700 seconds
def separate_voice_and_music(file: str) -> None: # Do not work above 700 seconds
os.system('spleeter separate -d 700.0 -o ../../../ -f "{instrument}/{filename}.{codec}" ' + file)


def extract_audio_from_movie(file: str, extension: str = '.wav') -> None:
"""Extract the audio from a movie and save it to a file.
The audio is saved in the same directory as the movie.
Args:
file (str): The name of the movie file to extract the audio from.
extension (str): The file extension of the audio file to save.
"""
clip = import_as_clip(file)
clip.audio.write_audiofile(file.split(sep='.')[0] + extension)
162 changes: 162 additions & 0 deletions notebooks/audio/whisper_example.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,162 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from bechdelai.data.youtube import download_youtube_video"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"youtube_trailer_url = \"https://www.youtube.com/watch?v=EzWIsGqeoVQ\"\n",
"output_filename = \"raid.mp4\"\n",
"youtube_language = \"fr-FR\""
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Task Completed!\n"
]
}
],
"source": [
"download_youtube_video(youtube_trailer_url, output_filename, youtube_language)"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/thomas/miniconda3/envs/bechdelai/lib/python3.9/site-packages/transformers/generation/utils.py:1273: UserWarning: Neither `max_length` nor `max_new_tokens` has been set, `max_length` will default to 448 (`generation_config.max_length`). Controlling `max_length` via the config is deprecated and `max_length` will be removed from the config in v5 of Transformers -- we recommend using `max_new_tokens` to control the maximum length of the generation.\n",
" warnings.warn(\n"
]
},
{
"data": {
"text/plain": [
"{'text': \" Leur Raid, l'élite de la police, des super-agences sur-entraînées. Leur devise, servir sans faillir. Suivant. Bonjour. Ah, c'est pour le secrétairelien, l'infirmiereau ou la cantine ? Je suis là pour le groupe d'intervention du Raid. C'est un danger pour le groupe, une gonzesse. Une femme froissale. Ça crie, ça chiale, ça se pète les ondes, ça se poince les cheveux dans le casque. Bon, on a une femme, c'est comme ça. Oh non ! Puis ça, tout le temps, envie de pisser. On n'a pas les combinaisons adaptées pour les pisseuses. Effectivement, vous n'êtes pas du tout macho. Je me suis trompé. Mais ? Vous êtes 16. Y a 4 lits par chambre. Faites-moi tout de suite 4 groupes de 4, s'il vous plaît. Alors ça, c'est un groupe de 16. I've been looking for her file. She's got very high quality. Do you know that? That's annoying. Hide it. And the fact that she wears the same name as the Minister of the Interior? But it has nothing to do with it. It's her daughter, but it has no relationship. I warn you, on the first occasion, I'll fire her. We have to go get her. No, it's good, look, she's still making bubbles. En casion, je la fiers. Il faut aller la chercher là. Non, c'est beau, regarde, elle fait encore des bulles. Pardon ! Elle a, elle est éliminée, elle a... Ah bah non. L'ennemi est neutralisé là. She's finished. Oh, no. The enemy is neutralized.\",\n",
" 'chunks': [{'text': \" Leur Raid, l'élite de la police, des super-agences sur-entraînées.\",\n",
" 'timestamp': (0.0, 5.0)},\n",
" {'text': ' Leur devise, servir sans faillir.', 'timestamp': (5.0, 8.0)},\n",
" {'text': ' Suivant.', 'timestamp': (8.0, 9.0)},\n",
" {'text': ' Bonjour.', 'timestamp': (9.0, 10.0)},\n",
" {'text': \" Ah, c'est pour le secrétairelien, l'infirmiereau ou la cantine ?\",\n",
" 'timestamp': (10.0, 12.0)},\n",
" {'text': \" Je suis là pour le groupe d'intervention du Raid.\",\n",
" 'timestamp': (12.0, 14.0)},\n",
" {'text': \" C'est un danger pour le groupe, une gonzesse.\",\n",
" 'timestamp': (14.0, 16.0)},\n",
" {'text': ' Une femme froissale.', 'timestamp': (16.0, 17.0)},\n",
" {'text': ' Ça crie, ça chiale, ça se pète les ondes, ça se poince les cheveux dans le casque.',\n",
" 'timestamp': (17.0, 22.0)},\n",
" {'text': \" Bon, on a une femme, c'est comme ça.\", 'timestamp': (22.0, 24.0)},\n",
" {'text': ' Oh non ! Puis ça, tout le temps, envie de pisser.',\n",
" 'timestamp': (24.0, 26.0)},\n",
" {'text': \" On n'a pas les combinaisons adaptées pour les pisseuses.\",\n",
" 'timestamp': (26.0, 28.0)},\n",
" {'text': \" Effectivement, vous n'êtes pas du tout macho.\",\n",
" 'timestamp': (28.0, 30.0)},\n",
" {'text': ' Je me suis trompé.', 'timestamp': (30.0, 31.0)},\n",
" {'text': ' Mais ?', 'timestamp': (31.0, 32.0)},\n",
" {'text': ' Vous êtes 16.', 'timestamp': (32.0, 33.0)},\n",
" {'text': ' Y a 4 lits par chambre.', 'timestamp': (33.0, 35.0)},\n",
" {'text': \" Faites-moi tout de suite 4 groupes de 4, s'il vous plaît.\",\n",
" 'timestamp': (35.0, 37.0)},\n",
" {'text': \" Alors ça, c'est un groupe de 16.\", 'timestamp': (37.0, 42.0)},\n",
" {'text': \" I've been looking for her file. She's got very high quality.\",\n",
" 'timestamp': (42.0, 45.0)},\n",
" {'text': ' Do you know that?', 'timestamp': (45.0, 46.0)},\n",
" {'text': \" That's annoying.\", 'timestamp': (46.0, 47.0)},\n",
" {'text': ' Hide it.', 'timestamp': (47.0, 48.0)},\n",
" {'text': ' And the fact that she wears the same name as the Minister of the Interior?',\n",
" 'timestamp': (48.0, 50.0)},\n",
" {'text': ' But it has nothing to do with it.', 'timestamp': (50.0, 51.0)},\n",
" {'text': \" It's her daughter, but it has no relationship.\",\n",
" 'timestamp': (51.0, 53.0)},\n",
" {'text': \" I warn you, on the first occasion, I'll fire her.\",\n",
" 'timestamp': (53.0, 55.0)},\n",
" {'text': ' We have to go get her.', 'timestamp': (55.0, 56.0)},\n",
" {'text': \" No, it's good, look, she's still making bubbles.\",\n",
" 'timestamp': (56.0, 59.0)},\n",
" {'text': ' En casion, je la fiers.', 'timestamp': (59.0, 60.0)},\n",
" {'text': ' Il faut aller la chercher là.', 'timestamp': (60.0, 61.0)},\n",
" {'text': \" Non, c'est beau, regarde, elle fait encore des bulles.\",\n",
" 'timestamp': (61.0, 63.0)},\n",
" {'text': ' Pardon !', 'timestamp': (63.0, 63.5)},\n",
" {'text': ' Elle a, elle est éliminée, elle a...', 'timestamp': (63.5, 65.0)},\n",
" {'text': ' Ah bah non.', 'timestamp': (65.0, 65.5)},\n",
" {'text': \" L'ennemi est neutralisé là.\", 'timestamp': (65.5, 66.5)},\n",
" {'text': \" She's finished.\", 'timestamp': (66.5, 68.3)},\n",
" {'text': ' Oh, no. The enemy is neutralized.', 'timestamp': (68.3, 70.7)}]}"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from bechdelai.audio.speech_recognition import SpeechRecognition\n",
"\n",
"sr = SpeechRecognition()\n",
"sr.transcribe(output_filename, \"fr\")\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "bechdelai",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.16"
},
"orig_nbformat": 4,
"vscode": {
"interpreter": {
"hash": "31ffc711ab2ee07bd298f523dc1dd63ebc15cb1e136e0e7de381fff9c93dfdff"
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@ authors = ["Théo Alves Da Costa <[email protected]>"]
license = "MIT"

[tool.poetry.dependencies]
python = ">=3.8,<3.10"
python = ">=3.8,<3.11"
jupyter = "^1.0.0"
pandas = "^1.3.4"
numpy = "^1.21.3"
Expand Down

0 comments on commit ecf17c6

Please sign in to comment.