-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
f0707af
commit 6447a49
Showing
2 changed files
with
228 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -56,3 +56,4 @@ Thumbs.db | |
notebooks/.ipynb_checkpoints | ||
.env | ||
.env | ||
.venv |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,227 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 28, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from climateguard.news_scrapper import NewsScraper\n", | ||
"from bs4 import BeautifulSoup\n", | ||
"import requests\n", | ||
"from tqdm.autonotebook import tqdm" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"ns = NewsScraper()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"BASE_URL = \"https://eng.lsm.lv\"\n", | ||
"subpath = \"/society/environment/\"\n", | ||
"response = requests.get(BASE_URL+subpath, headers=ns.headers)\n", | ||
"soup = BeautifulSoup(response.content, 'html.parser')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"116" | ||
] | ||
}, | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"articles = soup.body.find_all('article')\n", | ||
"len(articles)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 31, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"links = []\n", | ||
"for art in articles:\n", | ||
" a = art.find('a')\n", | ||
" if a:\n", | ||
" url = a.attrs.get('href')\n", | ||
" if url:\n", | ||
" links.append(BASE_URL + url)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"Attention : cette partie a été faite avec l'ancien code de scraping d'Amine et doit sûrement être adaptée si tu veux l'utiliser." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 33, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
" 0%| | 0/115 [00:00<?, ?it/s]" | ||
] | ||
}, | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"100%|██████████| 115/115 [02:13<00:00, 1.16s/it]\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"scraped = []\n", | ||
"for l in tqdm(links):\n", | ||
" scraped.append(ns.scrape_article(l))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 36, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import pandas as pd" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 38, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df = pd.DataFrame(scraped)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 49, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"'03.10.2024'" | ||
] | ||
}, | ||
"execution_count": 49, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"df.url[0].split('/')[-2].split('-')[0]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 51, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"dates = df['url'].apply(lambda s: s.split('/')[-2].split('-')[0])" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 54, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df['date'] = pd.to_datetime(dates, format='%d.%m.%Y')" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 64, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"df['num_chars'] = df.full_text.apply(len)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 74, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"count 115.000000\n", | ||
"mean 3024.626087\n", | ||
"std 3020.180439\n", | ||
"min 707.000000\n", | ||
"25% 1454.000000\n", | ||
"50% 2119.000000\n", | ||
"75% 3344.000000\n", | ||
"max 21682.000000\n", | ||
"Name: num_chars, dtype: float64" | ||
] | ||
}, | ||
"execution_count": 74, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"df.num_chars.describe()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": ".venv", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.10.12" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |