Skip to content

datahaki/ascona

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

alpine_877

ch.alpine.ascona

Computational non-linear geometry demos in Java 17

Student Projects

2019

  • Oliver Brinkmann (MT): Averaging on Lie Groups: Applications of Geodesic Averages and Biinvariant Means
  • Joel Gächter (MT): Subdivision-Based Clothoids in Autonomous Driving

Nearest Neighbors

nearest_r2

R^2

nearest_dubins

Dubins

nearest_clothoid

Clothoid

Visualization of Geodesic Averages

deboor5

A geodesic average is the generalization of an affine combination from the Euclidean space to a non-linear space. A geodesic average consists of a nested binary averages. Generally, an affine combination does not have a unique expression as a geodesic average. Instead, several geodesic averages reduce to the same affine combination when applied in Euclidean space.

Integration

Specify repository and dependency of the owl library in the pom.xml file of your maven project:

<dependencies>
  <dependency>
    <groupId>ch.alpine</groupId>
    <artifactId>ascona</artifactId>
    <version>0.0.1</version>
  </dependency>
</dependencies>

<repositories>
  <repository>
    <id>ascona-mvn-repo</id>
    <url>https://raw.github.com/datahaki/ascona/mvn-repo/</url>
    <snapshots>
      <enabled>true</enabled>
      <updatePolicy>always</updatePolicy>
    </snapshots>
  </repository>
</repositories>

Contributors

Jan Hakenberg, Jonas Londschien, Yannik Nager, André Stoll, Joel Gaechter

Publications

  • What lies in the shadows? Safe and computation-aware motion planning for autonomous vehicles using intent-aware dynamic shadow regions by Yannik Nager, Andrea Censi, and Emilio Frazzoli, video

References

  • A Generalized Label Correcting Method for Optimal Kinodynamic Motion Planning by Brian Paden and Emilio Frazzoli, arXiv:1607.06966, video
  • Sampling-based algorithms for optimal motion planning by Sertac Karaman and Emilio Frazzoli, IJRR11

The library was developed with the following objectives in mind

  • trajectory design for autonomous robots
  • suitable for use in safety-critical real-time systems
  • implementation of theoretical concepts with high level of abstraction

curve_se2

Curve Subdivision

smoothing

Smoothing

wachspress

Wachspress

dubinspathcurvature

Dubins path curvature

Features

  • geodesics in Lie-groups and homogeneous spaces: Euclidean space R^n, special Euclidean group SE(2), hyperbolic half-plane H2, n-dimensional sphere S^n, ...
  • parametric curves defined by control points in non-linear spaces: GeodesicBSplineFunction, ...
  • non-linear smoothing of noisy localization data GeodesicCenterFilter
  • Dubins path

Visualization of Geodesic Averages

deboor5

A geodesic average is the generalization of an affine combination from the Euclidean space to a non-linear space. A geodesic average consists of a nested binary averages. Generally, an affine combination does not have a unique expression as a geodesic average. Instead, several geodesic averages reduce to the same affine combination when applied in Euclidean space.

Contributors

Jan Hakenberg, Oliver Brinkmann, Joel Gächter

Publications

References

  • Bi-invariant Means in Lie Groups. Application to Left-invariant Polyaffine Transformations. by Vincent Arsigny, Xavier Pennec, Nicholas Ayache
  • Exponential Barycenters of the Canonical Cartan Connection and Invariant Means on Lie Groups by Xavier Pennec, Vincent Arsigny
  • Lie Groups for 2D and 3D Transformations by Ethan Eade
  • Manifold-valued subdivision schemes based on geodesic inductive averaging by Nira Dyn, Nir Sharon
  • Power Coordinates: A Geometric Construction of Barycentric Coordinates on Convex Polytopes by Max Budninskiy, Beibei Liu, Yiying Tong, Mathieu Desbrun

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages