Skip to content

Commit

Permalink
Merge tests into master (#50)
Browse files Browse the repository at this point in the history
* typo fixes

* rename tests to plots

* add test dir

* separate out plots from other tests

* consistent handling of ties during KNN classification

* consistent handling of ties during KNN classification

* add filter_punctuation flag

* move plots to a separate directory

* remove test module

* add warning for plotting and gym dependencies

* add setup.py and misc requirements for pip packaging

* fix package name and update readme

* Update README.md

* add available models to top-level readme

* Update README.md

* update installation documentation

* add best_arm to bandit oracle output

* fix github link
  • Loading branch information
ddbourgin authored Jun 20, 2020
1 parent 7879246 commit 4f37707
Show file tree
Hide file tree
Showing 38 changed files with 1,525 additions and 1,186 deletions.
4 changes: 4 additions & 0 deletions MANIFEST.in
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
include README.md
include requirements*.txt
include docs/*.rst
include docs/img/*.png
172 changes: 170 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,9 +1,177 @@
# numpy-ml
Ever wish you had an inefficient but somewhat legible collection of machine
learning algorithms implemented exclusively in numpy? No?
learning algorithms implemented exclusively in NumPy? No?

## Installation

### For rapid experimentation
To use this code as a starting point for ML prototyping / experimentation, just clone the repository, create a new [virtualenv](https://pypi.org/project/virtualenv/), and start hacking:

```sh
$ git clone https://github.com/ddbourgin/numpy-ml.git
$ cd numpy-ml && virtualenv npml && source npml/bin/activate
$ pip3 install -r requirements-dev.txt
```

### As a package
If you don't plan to modify the source, you can also install numpy-ml as a
Python package: `pip3 install -u numpy_ml`.

The reinforcement learning agents train on environments defined in the [OpenAI
gym](https://github.com/openai/gym). To install these alongside numpy-ml, you
can use `pip3 install -u 'numpy_ml[rl]'`.

## Documentation
To see all of the available models, take a look at the [project documentation](https://numpy-ml.readthedocs.io/) or see [here](https://github.com/ddbourgin/numpy-ml/blob/master/numpy_ml/README.md).
For more details on the available models, see the [project documentation](https://numpy-ml.readthedocs.io/).

## Available models
1. **Gaussian mixture model**
- EM training

2. **Hidden Markov model**
- Viterbi decoding
- Likelihood computation
- MLE parameter estimation via Baum-Welch/forward-backward algorithm

3. **Latent Dirichlet allocation** (topic model)
- Standard model with MLE parameter estimation via variational EM
- Smoothed model with MAP parameter estimation via MCMC

4. **Neural networks**
* Layers / Layer-wise ops
- Add
- Flatten
- Multiply
- Softmax
- Fully-connected/Dense
- Sparse evolutionary connections
- LSTM
- Elman-style RNN
- Max + average pooling
- Dot-product attention
- Embedding layer
- Restricted Boltzmann machine (w. CD-n training)
- 2D deconvolution (w. padding and stride)
- 2D convolution (w. padding, dilation, and stride)
- 1D convolution (w. padding, dilation, stride, and causality)
* Modules
- Bidirectional LSTM
- ResNet-style residual blocks (identity and convolution)
- WaveNet-style residual blocks with dilated causal convolutions
- Transformer-style multi-headed scaled dot product attention
* Regularizers
- Dropout
* Normalization
- Batch normalization (spatial and temporal)
- Layer normalization (spatial and temporal)
* Optimizers
- SGD w/ momentum
- AdaGrad
- RMSProp
- Adam
* Learning Rate Schedulers
- Constant
- Exponential
- Noam/Transformer
- Dlib scheduler
* Weight Initializers
- Glorot/Xavier uniform and normal
- He/Kaiming uniform and normal
- Standard and truncated normal
* Losses
- Cross entropy
- Squared error
- Bernoulli VAE loss
- Wasserstein loss with gradient penalty
- Noise contrastive estimation loss
* Activations
- ReLU
- Tanh
- Affine
- Sigmoid
- Leaky ReLU
- ELU
- SELU
- Exponential
- Hard Sigmoid
- Softplus
* Models
- Bernoulli variational autoencoder
- Wasserstein GAN with gradient penalty
- word2vec encoder with skip-gram and CBOW architectures
* Utilities
- `col2im` (MATLAB port)
- `im2col` (MATLAB port)
- `conv1D`
- `conv2D`
- `deconv2D`
- `minibatch`

5. **Tree-based models**
- Decision trees (CART)
- [Bagging] Random forests
- [Boosting] Gradient-boosted decision trees

6. **Linear models**
- Ridge regression
- Logistic regression
- Ordinary least squares
- Bayesian linear regression w/ conjugate priors
- Unknown mean, known variance (Gaussian prior)
- Unknown mean, unknown variance (Normal-Gamma / Normal-Inverse-Wishart prior)

7. **n-Gram sequence models**
- Maximum likelihood scores
- Additive/Lidstone smoothing
- Simple Good-Turing smoothing

8. **Multi-armed bandit models**
- UCB1
- LinUCB
- Epsilon-greedy
- Thompson sampling w/ conjugate priors
- Beta-Bernoulli sampler
- LinUCB

8. **Reinforcement learning models**
- Cross-entropy method agent
- First visit on-policy Monte Carlo agent
- Weighted incremental importance sampling Monte Carlo agent
- Expected SARSA agent
- TD-0 Q-learning agent
- Dyna-Q / Dyna-Q+ with prioritized sweeping

9. **Nonparameteric models**
- Nadaraya-Watson kernel regression
- k-Nearest neighbors classification and regression
- Gaussian process regression

10. **Matrix factorization**
- Regularized alternating least-squares
- Non-negative matrix factorization

11. **Preprocessing**
- Discrete Fourier transform (1D signals)
- Discrete cosine transform (type-II) (1D signals)
- Bilinear interpolation (2D signals)
- Nearest neighbor interpolation (1D and 2D signals)
- Autocorrelation (1D signals)
- Signal windowing
- Text tokenization
- Feature hashing
- Feature standardization
- One-hot encoding / decoding
- Huffman coding / decoding
- Term frequency-inverse document frequency (TF-IDF) encoding
- MFCC encoding

12. **Utilities**
- Similarity kernels
- Distance metrics
- Priority queue
- Ball tree
- Discrete sampler
- Graph processing and generators

## Contributing

Expand Down
37 changes: 27 additions & 10 deletions numpy_ml/bandits/bandits.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@

import numpy as np

from ..utils.testing import random_one_hot_matrix, is_number
from numpy_ml.utils.testing import random_one_hot_matrix, is_number


class Bandit(ABC):
Expand Down Expand Up @@ -104,6 +104,7 @@ def __init__(self, payoffs, payoff_probs):
self.payoff_probs = payoff_probs
self.arm_evs = np.array([sum(p * v) for p, v in zip(payoff_probs, payoffs)])
self.best_ev = np.max(self.arm_evs)
self.best_arm = np.argmax(self.arm_evs)

@property
def hyperparameters(self):
Expand All @@ -127,8 +128,10 @@ def oracle_payoff(self, context=None):
-------
optimal_rwd : float
The expected reward under an optimal policy.
optimal_arm : float
The arm ID with the largest expected reward.
"""
return self.best_ev
return self.best_ev, self.best_arm

def _pull(self, arm_id, context):
payoffs = self.payoffs[arm_id]
Expand Down Expand Up @@ -159,6 +162,7 @@ def __init__(self, payoff_probs):

self.arm_evs = self.payoff_probs
self.best_ev = np.max(self.arm_evs)
self.best_arm = np.argmax(self.arm_evs)

@property
def hyperparameters(self):
Expand All @@ -181,8 +185,10 @@ def oracle_payoff(self, context=None):
-------
optimal_rwd : float
The expected reward under an optimal policy.
optimal_arm : float
The arm ID with the largest expected reward.
"""
return self.best_ev
return self.best_ev, self.best_arm

def _pull(self, arm_id, context):
return int(np.random.rand() <= self.payoff_probs[arm_id])
Expand Down Expand Up @@ -217,6 +223,7 @@ def __init__(self, payoff_dists, payoff_probs):
self.payoff_probs = payoff_probs
self.arm_evs = np.array([mu for (mu, var) in payoff_dists])
self.best_ev = np.max(self.arm_evs)
self.best_arm = np.argmax(self.arm_evs)

@property
def hyperparameters(self):
Expand Down Expand Up @@ -249,8 +256,10 @@ def oracle_payoff(self, context=None):
-------
optimal_rwd : float
The expected reward under an optimal policy.
optimal_arm : float
The arm ID with the largest expected reward.
"""
return self.best_ev
return self.best_ev, self.best_arm


class ShortestPathBandit(Bandit):
Expand Down Expand Up @@ -282,6 +291,7 @@ def __init__(self, G, start_vertex, end_vertex):

self.arm_evs = self._calc_arm_evs()
self.best_ev = np.max(self.arm_evs)
self.best_arm = np.argmax(self.arm_evs)

placeholder = [None] * len(self.paths)
super().__init__(placeholder, placeholder)
Expand Down Expand Up @@ -309,8 +319,10 @@ def oracle_payoff(self, context=None):
-------
optimal_rwd : float
The expected reward under an optimal policy.
optimal_arm : float
The arm ID with the largest expected reward.
"""
return self.best_ev
return self.best_ev, self.best_arm

def _calc_arm_evs(self):
I2V = self.G.get_vertex
Expand Down Expand Up @@ -353,7 +365,8 @@ def __init__(self, context_probs):

self.context_probs = context_probs
self.arm_evs = self.context_probs
self.best_ev = self.arm_evs.max(axis=1)
self.best_evs = self.arm_evs.max(axis=1)
self.best_arms = self.arm_evs.argmax(axis=1)

@property
def hyperparameters(self):
Expand Down Expand Up @@ -386,15 +399,17 @@ def oracle_payoff(self, context):
Parameters
----------
context : :py:class:`ndarray <numpy.ndarray>` of shape `(D, K)` or None
The current context matrix for each of the bandit arms, if
applicable. Default is None.
The current context matrix for each of the bandit arms.
Returns
-------
optimal_rwd : float
The expected reward under an optimal policy.
optimal_arm : float
The arm ID with the largest expected reward.
"""
return context[:, 0] @ self.best_ev
context_id = context[:, 0].argmax()
return self.best_evs[context_id], self.best_arms[context_id]

def _pull(self, arm_id, context):
D, K = self.context_probs.shape
Expand Down Expand Up @@ -499,9 +514,11 @@ def oracle_payoff(self, context):
-------
optimal_rwd : float
The expected reward under an optimal policy.
optimal_arm : float
The arm ID with the largest expected reward.
"""
best_arm = np.argmax(self.arm_evs)
return self.arm_evs[best_arm]
return self.arm_evs[best_arm], best_arm

def _pull(self, arm_id, context):
K, thetas = self.K, self.thetas
Expand Down
20 changes: 10 additions & 10 deletions numpy_ml/bandits/policies.py
Original file line number Diff line number Diff line change
Expand Up @@ -202,13 +202,12 @@ def __init__(self, C=1, ev_prior=0.5):
\text{UCB}(a, t) = \text{EV}_t(a) + C \sqrt{\frac{2 \log t}{N_t(a)}}
where :math:`\text{UCB}(a, t)` is the upper confidence bound on the
expected value of arm `a` at time `t`, :math:`\text{EV}_t(a)` is the
average of the rewards recieved so far from pulling arm `a`, `C` is a
parameter controlling the confidence upper bound of the estimate for
:math:`\text{UCB}(a, t)` (for logarithmic regret bounds, `C` must
equal 1), and :math:`N_t(a)` is the number of times arm `a` has been
pulled during the previous `t - 1` timesteps.
where :math:`\text{EV}_t(a)` is the average of the rewards recieved so
far from pulling arm `a`, `C` is a free parameter controlling the
"optimism" of the confidence upper bound for :math:`\text{UCB}(a, t)`
(for logarithmic regret bounds, `C` must equal 1), and :math:`N_t(a)`
is the number of times arm `a` has been pulled during the previous `t -
1` timesteps.
References
----------
Expand All @@ -220,7 +219,8 @@ def __init__(self, C=1, ev_prior=0.5):
----------
C : float in (0, +infinity)
A confidence/optimisim parameter affecting the degree of
exploration. The UCB1 algorithm assumes `C=1`. Default is 1.
exploration, where larger values encourage greater exploration. The
UCB1 algorithm assumes `C=1`. Default is 1.
ev_prior : float
The starting expected value for each arm before any data has been
observed. Default is 0.5.
Expand Down Expand Up @@ -292,10 +292,10 @@ def __init__(self, alpha=1, beta=1):
where :math:`k \in \{1,\ldots,K \}` indexes arms in the MAB and
:math:`\theta_k` is the parameter of the Bernoulli likelihood for arm
`k`. The sampler begins by selecting an arm with probability
proportional to it's payoff probability under the initial Beta prior.
proportional to its payoff probability under the initial Beta prior.
After pulling the sampled arm and receiving a reward, `r`, the sampler
computes the posterior over the model parameters (arm payoffs) via
Bayes' rule, and then samples a new action in proportion to it's payoff
Bayes' rule, and then samples a new action in proportion to its payoff
probability under this posterior. This process (i.e., sample action
from posterior, take action and receive reward, compute updated
posterior) is repeated until the number of trials is exhausted.
Expand Down
Loading

0 comments on commit 4f37707

Please sign in to comment.