-
Notifications
You must be signed in to change notification settings - Fork 131
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Pgvector - embedding retrieval (#298)
* squash * Update integrations/pgvector/src/haystack_integrations/document_stores/pgvector/document_store.py Co-authored-by: Massimiliano Pippi <[email protected]> * Update integrations/pgvector/src/haystack_integrations/document_stores/pgvector/document_store.py Co-authored-by: Massimiliano Pippi <[email protected]> * Update integrations/pgvector/src/haystack_integrations/document_stores/pgvector/document_store.py Co-authored-by: Massimiliano Pippi <[email protected]> * Update integrations/pgvector/src/haystack_integrations/document_stores/pgvector/document_store.py Co-authored-by: Massimiliano Pippi <[email protected]> * fix fmt --------- Co-authored-by: Massimiliano Pippi <[email protected]>
- Loading branch information
Showing
3 changed files
with
229 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
130 changes: 130 additions & 0 deletions
130
integrations/pgvector/tests/test_embedding_retrieval.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,130 @@ | ||
# SPDX-FileCopyrightText: 2023-present deepset GmbH <[email protected]> | ||
# | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
from typing import List | ||
|
||
import pytest | ||
from haystack.dataclasses.document import Document | ||
from haystack_integrations.document_stores.pgvector import PgvectorDocumentStore | ||
from numpy.random import rand | ||
|
||
|
||
class TestEmbeddingRetrieval: | ||
@pytest.fixture | ||
def document_store_w_hnsw_index(self, request): | ||
connection_string = "postgresql://postgres:postgres@localhost:5432/postgres" | ||
table_name = f"haystack_hnsw_{request.node.name}" | ||
embedding_dimension = 768 | ||
vector_function = "cosine_similarity" | ||
recreate_table = True | ||
search_strategy = "hnsw" | ||
|
||
store = PgvectorDocumentStore( | ||
connection_string=connection_string, | ||
table_name=table_name, | ||
embedding_dimension=embedding_dimension, | ||
vector_function=vector_function, | ||
recreate_table=recreate_table, | ||
search_strategy=search_strategy, | ||
) | ||
yield store | ||
|
||
store.delete_table() | ||
|
||
@pytest.mark.parametrize("document_store", ["document_store", "document_store_w_hnsw_index"], indirect=True) | ||
def test_embedding_retrieval_cosine_similarity(self, document_store: PgvectorDocumentStore): | ||
query_embedding = [0.1] * 768 | ||
most_similar_embedding = [0.8] * 768 | ||
second_best_embedding = [0.8] * 700 + [0.1] * 3 + [0.2] * 65 | ||
another_embedding = rand(768).tolist() | ||
|
||
docs = [ | ||
Document(content="Most similar document (cosine sim)", embedding=most_similar_embedding), | ||
Document(content="2nd best document (cosine sim)", embedding=second_best_embedding), | ||
Document(content="Not very similar document (cosine sim)", embedding=another_embedding), | ||
] | ||
|
||
document_store.write_documents(docs) | ||
|
||
results = document_store._embedding_retrieval( | ||
query_embedding=query_embedding, top_k=2, filters={}, vector_function="cosine_similarity" | ||
) | ||
assert len(results) == 2 | ||
assert results[0].content == "Most similar document (cosine sim)" | ||
assert results[1].content == "2nd best document (cosine sim)" | ||
assert results[0].score > results[1].score | ||
|
||
@pytest.mark.parametrize("document_store", ["document_store", "document_store_w_hnsw_index"], indirect=True) | ||
def test_embedding_retrieval_inner_product(self, document_store: PgvectorDocumentStore): | ||
query_embedding = [0.1] * 768 | ||
most_similar_embedding = [0.8] * 768 | ||
second_best_embedding = [0.8] * 700 + [0.1] * 3 + [0.2] * 65 | ||
another_embedding = rand(768).tolist() | ||
|
||
docs = [ | ||
Document(content="Most similar document (inner product)", embedding=most_similar_embedding), | ||
Document(content="2nd best document (inner product)", embedding=second_best_embedding), | ||
Document(content="Not very similar document (inner product)", embedding=another_embedding), | ||
] | ||
|
||
document_store.write_documents(docs) | ||
|
||
results = document_store._embedding_retrieval( | ||
query_embedding=query_embedding, top_k=2, filters={}, vector_function="inner_product" | ||
) | ||
assert len(results) == 2 | ||
assert results[0].content == "Most similar document (inner product)" | ||
assert results[1].content == "2nd best document (inner product)" | ||
assert results[0].score > results[1].score | ||
|
||
@pytest.mark.parametrize("document_store", ["document_store", "document_store_w_hnsw_index"], indirect=True) | ||
def test_embedding_retrieval_l2_distance(self, document_store: PgvectorDocumentStore): | ||
query_embedding = [0.1] * 768 | ||
most_similar_embedding = [0.1] * 765 + [0.15] * 3 | ||
second_best_embedding = [0.1] * 700 + [0.1] * 3 + [0.2] * 65 | ||
another_embedding = rand(768).tolist() | ||
|
||
docs = [ | ||
Document(content="Most similar document (l2 dist)", embedding=most_similar_embedding), | ||
Document(content="2nd best document (l2 dist)", embedding=second_best_embedding), | ||
Document(content="Not very similar document (l2 dist)", embedding=another_embedding), | ||
] | ||
|
||
document_store.write_documents(docs) | ||
|
||
results = document_store._embedding_retrieval( | ||
query_embedding=query_embedding, top_k=2, filters={}, vector_function="l2_distance" | ||
) | ||
assert len(results) == 2 | ||
assert results[0].content == "Most similar document (l2 dist)" | ||
assert results[1].content == "2nd best document (l2 dist)" | ||
assert results[0].score < results[1].score | ||
|
||
@pytest.mark.parametrize("document_store", ["document_store", "document_store_w_hnsw_index"], indirect=True) | ||
def test_embedding_retrieval_with_filters(self, document_store: PgvectorDocumentStore): | ||
docs = [Document(content=f"Document {i}", embedding=rand(768).tolist()) for i in range(10)] | ||
|
||
for i in range(10): | ||
docs[i].meta["meta_field"] = "custom_value" if i % 2 == 0 else "other_value" | ||
|
||
document_store.write_documents(docs) | ||
|
||
query_embedding = [0.1] * 768 | ||
filters = {"field": "meta.meta_field", "operator": "==", "value": "custom_value"} | ||
|
||
results = document_store._embedding_retrieval(query_embedding=query_embedding, top_k=3, filters=filters) | ||
assert len(results) == 3 | ||
for result in results: | ||
assert result.meta["meta_field"] == "custom_value" | ||
assert results[0].score > results[1].score > results[2].score | ||
|
||
def test_empty_query_embedding(self, document_store: PgvectorDocumentStore): | ||
query_embedding: List[float] = [] | ||
with pytest.raises(ValueError): | ||
document_store._embedding_retrieval(query_embedding=query_embedding) | ||
|
||
def test_query_embedding_wrong_dimension(self, document_store: PgvectorDocumentStore): | ||
query_embedding = [0.1] * 4 | ||
with pytest.raises(ValueError): | ||
document_store._embedding_retrieval(query_embedding=query_embedding) |