Skip to content

Commit

Permalink
feat!: Add support for Optimum optimizers and quantizers
Browse files Browse the repository at this point in the history
  • Loading branch information
shadeMe committed Feb 28, 2024
1 parent 7a8a292 commit efd0a55
Show file tree
Hide file tree
Showing 11 changed files with 561 additions and 126 deletions.
6 changes: 3 additions & 3 deletions .github/workflows/optimum.yml
Original file line number Diff line number Diff line change
Expand Up @@ -52,9 +52,9 @@ jobs:
if: matrix.python-version == '3.9' && runner.os == 'Linux'
run: hatch run lint:all

- name: Generate docs
if: matrix.python-version == '3.9' && runner.os == 'Linux'
run: hatch run docs
# - name: Generate docs
# if: matrix.python-version == '3.9' && runner.os == 'Linux'
# run: hatch run docs

- name: Run tests
run: hatch run cov
2 changes: 2 additions & 0 deletions integrations/optimum/pydoc/config.yml
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@ loaders:
"haystack_integrations.components.embedders.optimum.optimum_document_embedder",
"haystack_integrations.components.embedders.optimum.optimum_text_embedder",
"haystack_integrations.components.embedders.optimum.pooling",
"haystack_integrations.components.embedders.optimum.optimization",
"haystack_integrations.components.embedders.optimum.quantization",
]
ignore_when_discovered: ["__init__"]
processors:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2,8 +2,18 @@
#
# SPDX-License-Identifier: Apache-2.0

from .optimization import OptimumEmbedderOptimizationConfig, OptimumEmbedderOptimizationMode
from .optimum_document_embedder import OptimumDocumentEmbedder
from .optimum_text_embedder import OptimumTextEmbedder
from .pooling import OptimumEmbedderPooling
from .quantization import OptimumEmbedderQuantizationConfig, OptimumEmbedderQuantizationMode

__all__ = ["OptimumDocumentEmbedder", "OptimumEmbedderPooling", "OptimumTextEmbedder"]
__all__ = [
"OptimumDocumentEmbedder",
"OptimumEmbedderOptimizationMode",
"OptimumEmbedderOptimizationConfig",
"OptimumEmbedderPooling",
"OptimumEmbedderQuantizationMode",
"OptimumEmbedderQuantizationConfig",
"OptimumTextEmbedder",
]
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
import copy
import json
from dataclasses import dataclass
from typing import Any, Dict, List, Optional, Union
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union

import numpy as np
import torch
Expand All @@ -11,10 +12,17 @@
from sentence_transformers.models import Pooling as SentenceTransformerPoolingLayer
from tqdm import tqdm
from transformers import AutoTokenizer
from transformers.modeling_outputs import BaseModelOutput

from optimum.onnxruntime import ORTModelForFeatureExtraction
from optimum.onnxruntime import (
ORTModelForFeatureExtraction,
ORTOptimizer,
ORTQuantizer,
)

from .optimization import OptimumEmbedderOptimizationConfig
from .pooling import OptimumEmbedderPooling
from .quantization import OptimumEmbedderQuantizationConfig


@dataclass
Expand All @@ -29,23 +37,41 @@ class _EmbedderParams:
progress_bar: bool
pooling_mode: Optional[Union[str, OptimumEmbedderPooling]]
model_kwargs: Optional[Dict[str, Any]]
working_dir: Optional[str]
optimizer_settings: Optional[OptimumEmbedderOptimizationConfig]
quantizer_settings: Optional[OptimumEmbedderQuantizationConfig]

def serialize(self) -> Dict[str, Any]:
out = {}
for field in self.__dataclass_fields__.keys():
if field in [
"pooling_mode",
"token",
"optimizer_settings",
"quantizer_settings",
]:
continue
out[field] = copy.deepcopy(getattr(self, field))

# Fixups.
assert isinstance(self.pooling_mode, OptimumEmbedderPooling)
out["pooling_mode"] = self.pooling_mode.value
out["pooling_mode"] = str(self.pooling_mode)
out["token"] = self.token.to_dict() if self.token else None
out["optimizer_settings"] = self.optimizer_settings.to_dict() if self.optimizer_settings else None
out["quantizer_settings"] = self.quantizer_settings.to_dict() if self.quantizer_settings else None

out["model_kwargs"].pop("use_auth_token", None)
serialize_hf_model_kwargs(out["model_kwargs"])
return out

@classmethod
def deserialize_inplace(cls, data: Dict[str, Any]) -> Dict[str, Any]:
data["pooling_mode"] = OptimumEmbedderPooling.from_str(data["pooling_mode"])
if data["optimizer_settings"] is not None:
data["optimizer_settings"] = OptimumEmbedderOptimizationConfig.from_dict(data["optimizer_settings"])
if data["quantizer_settings"] is not None:
data["quantizer_settings"] = OptimumEmbedderQuantizationConfig.from_dict(data["quantizer_settings"])

deserialize_secrets_inplace(data, keys=["token"])
deserialize_hf_model_kwargs(data["model_kwargs"])
return data
Expand All @@ -71,6 +97,11 @@ def __init__(self, params: _EmbedderParams):

params.model_kwargs = params.model_kwargs or {}

if params.optimizer_settings or params.quantizer_settings:
if not params.working_dir:
msg = "Working directory is required for optimization and quantization"
raise ValueError(msg)

# Check if the model_kwargs contain the parameters, otherwise, populate them with values from init parameters
params.model_kwargs.setdefault("model_id", params.model)
params.model_kwargs.setdefault("provider", params.onnx_execution_provider)
Expand All @@ -82,18 +113,48 @@ def __init__(self, params: _EmbedderParams):
self.pooling_layer = None

def warm_up(self):
self.model = ORTModelForFeatureExtraction.from_pretrained(**self.params.model_kwargs, export=True)
assert self.params.model_kwargs
model_kwargs = copy.deepcopy(self.params.model_kwargs)
model = ORTModelForFeatureExtraction.from_pretrained(**model_kwargs, export=True)

# Model ID will be passed explicitly if optimization/quantization is enabled.
model_kwargs.pop("model_id", None)

optimized_model = False
if self.params.optimizer_settings:
assert self.params.working_dir
optimizer = ORTOptimizer.from_pretrained(model)
save_dir = optimizer.optimize(
save_dir=self.params.working_dir, optimization_config=self.params.optimizer_settings.to_optimum_config()
)
model = ORTModelForFeatureExtraction.from_pretrained(model_id=save_dir, **model_kwargs)
optimized_model = True

if self.params.quantizer_settings:
assert self.params.working_dir

# We need to create a subfolder for models that were optimized before quantization
# since Optimum expects no more than one ONXX model in the working directory. There's
# a file name parameter, but the optimizer only returns the working directory.
working_dir = (
Path(self.params.working_dir) if not optimized_model else Path(self.params.working_dir) / "quantized"
)
quantizer = ORTQuantizer.from_pretrained(model)
save_dir = quantizer.quantize(
save_dir=working_dir, quantization_config=self.params.quantizer_settings.to_optimum_config()
)
model = ORTModelForFeatureExtraction.from_pretrained(model_id=save_dir, **model_kwargs)

self.model = model
self.tokenizer = AutoTokenizer.from_pretrained(
self.params.model, token=self.params.token.resolve_value() if self.params.token else None
)

# We need the width of the embeddings to initialize the pooling layer
# so we do a dummy forward pass with the model.
dummy_input = self.tokenizer(["dummy input"], padding=True, truncation=True, return_tensors="pt").to(
self.model.device
)
dummy_output = self.model(input_ids=dummy_input["input_ids"], attention_mask=dummy_input["attention_mask"])
width = dummy_output[0].size(dim=2) # BaseModelOutput.last_hidden_state
width = self._tokenize_and_generate_outputs(["dummy input"])[1][0].size(
dim=2
) # BaseModelOutput.last_hidden_state

self.pooling_layer = SentenceTransformerPoolingLayer(
width,
Expand All @@ -105,6 +166,17 @@ def warm_up(self):
pooling_mode_lasttoken=self.params.pooling_mode == OptimumEmbedderPooling.LAST_TOKEN,
)

def _tokenize_and_generate_outputs(self, texts: List[str]) -> Tuple[Dict[str, Any], BaseModelOutput]:
assert self.model is not None
assert self.tokenizer is not None

tokenizer_outputs = self.tokenizer(texts, padding=True, truncation=True, return_tensors="pt").to(
self.model.device
)
model_inputs = {k: v for k, v in tokenizer_outputs.items() if k in self.model.inputs_names}
model_outputs = self.model(**model_inputs)
return tokenizer_outputs, model_outputs

@property
def parameters(self) -> _EmbedderParams:
return self.params
Expand Down Expand Up @@ -140,11 +212,8 @@ def embed_texts(
desc="Calculating embeddings",
):
batch = sentences_sorted[i : i + self.params.batch_size]
encoded_input = self.tokenizer(batch, padding=True, truncation=True, return_tensors="pt").to(device)
model_output = self.model(
input_ids=encoded_input["input_ids"], attention_mask=encoded_input["attention_mask"]
)
sentence_embeddings = self.pool_embeddings(model_output[0], encoded_input["attention_mask"].to(device))
tokenizer_output, model_output = self._tokenize_and_generate_outputs(batch)
sentence_embeddings = self.pool_embeddings(model_output[0], tokenizer_output["attention_mask"].to(device))
all_embeddings.append(sentence_embeddings)

embeddings = torch.cat(all_embeddings, dim=0)
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict

from optimum.onnxruntime.configuration import AutoOptimizationConfig, OptimizationConfig


class OptimumEmbedderOptimizationMode(Enum):
"""
[ONXX Optimization Modes](https://huggingface.co/docs/optimum/onnxruntime/usage_guides/optimization.html)
support by the Optimum Embedders.
"""

#: Basic general optimizations.
O1 = "o1"

#: Basic and extended general optimizations, transformers-specific fusions.
O2 = "o2"

#: Same as O2 with Gelu approximation.
O3 = "o3"

#: Same as O3 with mixed precision.
O4 = "o4"

def __str__(self):
return self.value

@classmethod
def from_str(cls, string: str) -> "OptimumEmbedderOptimizationMode":
"""
Create an optimization mode from a string.
:param string:
String to convert.
:returns:
Optimization mode.
"""
enum_map = {e.value: e for e in OptimumEmbedderOptimizationMode}
opt_mode = enum_map.get(string)
if opt_mode is None:
msg = f"Unknown optimization mode '{string}'. Supported modes are: {list(enum_map.keys())}"
raise ValueError(msg)
return opt_mode


@dataclass(frozen=True)
class OptimumEmbedderOptimizationConfig:
"""
Configuration for Optimum Embedder Optimization.
:param mode:
Optimization mode.
:param for_gpu:
Whether to optimize for GPUs.
"""

mode: OptimumEmbedderOptimizationMode
for_gpu: bool = True

def to_optimum_config(self) -> OptimizationConfig:
"""
Convert the configuration to a Optimum configuration.
:returns:
Optimum configuration.
"""
if self.mode == OptimumEmbedderOptimizationMode.O1:
return AutoOptimizationConfig.O1(for_gpu=self.for_gpu)
elif self.mode == OptimumEmbedderOptimizationMode.O2:
return AutoOptimizationConfig.O2(for_gpu=self.for_gpu)
elif self.mode == OptimumEmbedderOptimizationMode.O3:
return AutoOptimizationConfig.O3(for_gpu=self.for_gpu)
elif self.mode == OptimumEmbedderOptimizationMode.O4:
return AutoOptimizationConfig.O4(for_gpu=self.for_gpu)
else:
msg = f"Unknown optimization mode '{self.mode}'"
raise ValueError(msg)

def to_dict(self) -> Dict[str, Any]:
"""
Convert the configuration to a dictionary.
:returns:
Dictionary with serialized data.
"""
return {
"mode": str(self.mode),
"for_gpu": self.for_gpu,
}

@classmethod
def from_dict(cls, data: Dict[str, Any]) -> "OptimumEmbedderOptimizationConfig":
"""
Create an optimization configuration from a dictionary.
:param data:
Dictionary to deserialize from.
:returns:
Optimization configuration.
"""
return OptimumEmbedderOptimizationConfig(
mode=OptimumEmbedderOptimizationMode.from_str(data["mode"]),
for_gpu=data["for_gpu"],
)
Loading

0 comments on commit efd0a55

Please sign in to comment.