Skip to content

Commit

Permalink
feat(test): Integration test for S3 log store with pyspark
Browse files Browse the repository at this point in the history
  • Loading branch information
dispanser committed Dec 27, 2023
1 parent bc9253c commit b4cbd3c
Show file tree
Hide file tree
Showing 2 changed files with 205 additions and 1 deletion.
196 changes: 196 additions & 0 deletions python/tests/pyspark_integration/test_concurrent_write_s3_dynamo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,196 @@
"""Test concurrent writes between pyspark and deltalake(delta-rs)."""

from deltalake import DeltaTable, write_deltalake
from tests.pyspark_integration.utils import get_spark

import concurrent.futures as ft
import os
import subprocess

import pandas as pd
import pyspark
import pytest
import time
import uuid


def configure_spark_session_for_s3(
spark: pyspark.sql.SparkSession, lock_table_name: str
):
spark.conf.set(
"spark.hadoop.fs.s3a.aws.credentials.provider",
"com.amazonaws.auth.profile.ProfileCredentialsProvider",
)
spark.conf.set(
"spark.delta.logStore.s3a.impl", "io.delta.storage.S3DynamoDBLogStore"
)
spark.conf.set(
"spark.io.delta.storage.S3DynamoDBLogStore.ddb.region", "eu-central-1"
)
spark.conf.set(
"spark.io.delta.storage.S3DynamoDBLogStore.ddb.tableName", lock_table_name
)
return spark.newSession()


def written_by_spark(filename: str) -> bool:
return filename.startswith("part-00000-")


def run_spark_insert(table_uri: str, lock_table_name: str, run_until: float) -> int:
region = os.environ.get("AWS_REGION", "us-east-1")
spark = get_spark()
spark.conf.set(
"spark.io.delta.storage.S3DynamoDBLogStore.ddb.tableName", lock_table_name
)
spark.conf.set(
"spark.hadoop.fs.s3a.aws.credentials.provider",
"com.amazonaws.auth.profile.ProfileCredentialsProvider",
)
spark.conf.set("spark.io.delta.storage.S3DynamoDBLogStore.ddb.region", region)
row = 0
while True:
row += 1
spark.createDataFrame(
[(row, "created by spark")], schema=["row", "creator"]
).coalesce(1).write.save(
table_uri,
mode="append",
format="delta",
)
if time.time() >= run_until:
break
return row


def run_delta_rs_insert(dt: DeltaTable, run_until: float) -> int:
row = 0
while True:
row += 1
df = pd.DataFrame({"row": [row], "creator": ["created by delta-rs"]})
write_deltalake(dt, df, schema=dt.schema(), mode="append")
if time.time() > run_until:
break
return row


@pytest.mark.pyspark
@pytest.mark.integration
def test_concurrent_writes_pyspark_delta(setup):
run_duration = 30

(table_uri, table_name) = setup
# this is to create the table, in a non-concurrent way
initial_insert = run_spark_insert(table_uri, table_name, time.time())
assert initial_insert == 1

os.environ["AWS_S3_LOCKING_PROVIDER"] = "dynamodb"
os.environ["DELTA_DYNAMO_TABLE_NAME"] = table_name
dt = DeltaTable(table_uri)
with ft.ThreadPoolExecutor(max_workers=2) as executor:
spark_insert = executor.submit(
run_spark_insert,
table_uri,
table_name,
time.time() + run_duration,
)
delta_insert = executor.submit(
run_delta_rs_insert,
dt,
time.time() + run_duration,
)
spark_total_inserts = spark_insert.result()
delta_total_inserts = delta_insert.result()
dt = DeltaTable(table_uri)
assert dt.version() == spark_total_inserts + delta_total_inserts

files_from_spark = len(list(filter(written_by_spark, dt.files())))
assert files_from_spark == spark_total_inserts + 1
# +1 is for the initial write that created the table
assert dt.files().__len__() == spark_total_inserts + delta_total_inserts + 1


def create_bucket(bucket_url: str):
env = os.environ.copy()
res = (
subprocess.run(
[
"aws",
"s3",
"mb",
bucket_url,
],
env=env,
),
)


def remove_bucket(bucket_url: str):
env = os.environ.copy()
res = (
subprocess.run(
[
"aws",
"s3",
"rb",
bucket_url,
"--force",
],
env=env,
),
)


def create_dynamodb_table(table_name: str):
env = os.environ.copy()
res = (
subprocess.run(
[
"aws",
"dynamodb",
"create-table",
"--table-name",
table_name,
"--attribute-definitions",
"AttributeName=tablePath,AttributeType=S",
"AttributeName=fileName,AttributeType=S",
"--key-schema",
"AttributeName=tablePath,KeyType=HASH",
"AttributeName=fileName,KeyType=RANGE",
"--provisioned-throughput",
"ReadCapacityUnits=5,WriteCapacityUnits=5",
],
env=env,
),
)


def delete_dynamodb_table(table_name: str):
env = os.environ.copy()
res = (
subprocess.run(
[
"aws",
"dynamodb",
"delete-table",
"--table-name",
table_name,
],
env=env,
),
)


@pytest.fixture
def setup():
id = uuid.uuid4()
bucket_name = f"delta-rs-integration-{id}"
bucket_url = f"s3://{bucket_name}"

create_bucket(bucket_url)
create_dynamodb_table(bucket_name)
# spark always uses s3a://, so delta has to as well, because the dynamodb primary key is the
# table root path and it must match between all writers
yield (f"s3a://{bucket_name}/test-concurrent-writes", bucket_name)
delete_dynamodb_table(bucket_name)
remove_bucket(bucket_url)
10 changes: 9 additions & 1 deletion python/tests/pyspark_integration/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,8 +26,16 @@ def get_spark():
"spark.sql.catalog.spark_catalog",
"org.apache.spark.sql.delta.catalog.DeltaCatalog",
)
# log store setting must be present at SparkSession creation, and can't be configured later
.config("spark.delta.logStore.s3a.impl", "io.delta.storage.S3DynamoDBLogStore")
)
return delta.pip_utils.configure_spark_with_delta_pip(builder).getOrCreate()
extra_packages = [
"io.delta:delta-storage-s3-dynamodb:3.0.0",
"org.apache.hadoop:hadoop-aws:3.3.1",
]
return delta.pip_utils.configure_spark_with_delta_pip(
builder, extra_packages
).getOrCreate()


def assert_spark_read_equal(
Expand Down

0 comments on commit b4cbd3c

Please sign in to comment.