Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

refactor: merge to use logical plans #1720

Merged
merged 9 commits into from
Nov 19, 2023
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
48 changes: 48 additions & 0 deletions crates/deltalake-core/src/delta_datafusion/logical.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
//! Logical Operations for DataFusion
use datafusion_expr::{LogicalPlan, UserDefinedLogicalNodeCore};

// Metric Observer is used to update DataFusion metrics from a record batch.
// See MetricObserverExec for the physical implementation

#[derive(Debug, Hash, Eq, PartialEq)]
pub(crate) struct MetricObserver {
// id is preserved during conversion to physical node
pub id: String,
pub input: LogicalPlan,
}

impl UserDefinedLogicalNodeCore for MetricObserver {
// Predicate push down is not supported for this node. Try to limit usage
// near the end of plan.
fn name(&self) -> &str {
"MetricObserver"
}

fn inputs(&self) -> Vec<&datafusion_expr::LogicalPlan> {
vec![&self.input]
}

fn schema(&self) -> &datafusion_common::DFSchemaRef {
self.input.schema()
}

fn expressions(&self) -> Vec<datafusion_expr::Expr> {
vec![]
}

fn fmt_for_explain(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "MetricObserver id={}", &self.id)
}

fn from_template(
&self,
_exprs: &[datafusion_expr::Expr],
inputs: &[datafusion_expr::LogicalPlan],
) -> Self {
MetricObserver {
id: self.id.clone(),
input: inputs[0].clone(),
}
}
}
9 changes: 3 additions & 6 deletions crates/deltalake-core/src/delta_datafusion/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -81,6 +81,8 @@ use crate::{open_table, open_table_with_storage_options, DeltaTable};
const PATH_COLUMN: &str = "__delta_rs_path";

pub mod expr;
pub mod logical;
pub mod physical;

impl From<DeltaTableError> for DataFusionError {
fn from(err: DeltaTableError) -> Self {
Expand Down Expand Up @@ -351,7 +353,7 @@ pub(crate) fn logical_schema(
snapshot: &DeltaTableState,
scan_config: &DeltaScanConfig,
) -> DeltaResult<SchemaRef> {
let input_schema = snapshot.input_schema()?;
let input_schema = snapshot.arrow_schema()?;
let mut fields = Vec::new();
for field in input_schema.fields.iter() {
fields.push(field.to_owned());
Expand Down Expand Up @@ -505,11 +507,6 @@ impl<'a> DeltaScanBuilder<'a> {
self
}

pub fn with_schema(mut self, schema: SchemaRef) -> Self {
self.schema = Some(schema);
self
}

pub async fn build(self) -> DeltaResult<DeltaScan> {
let config = self.config;
let schema = match self.schema {
Expand Down
180 changes: 180 additions & 0 deletions crates/deltalake-core/src/delta_datafusion/physical.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,180 @@
//! Physical Operations for DataFusion
use std::sync::Arc;

use arrow_schema::SchemaRef;
use datafusion::arrow::record_batch::RecordBatch;
use datafusion::error::Result as DataFusionResult;
use datafusion::physical_plan::DisplayAs;
use datafusion::physical_plan::{
metrics::{ExecutionPlanMetricsSet, MetricsSet},
ExecutionPlan, RecordBatchStream, SendableRecordBatchStream,
};
use futures::{Stream, StreamExt};

use crate::DeltaTableError;

// Metric Observer is used to update DataFusion metrics from a record batch.
// Typically the null count for a particular column is pulled after performing a
// projection since this count is easy to obtain

pub(crate) type MetricObserverFunction = fn(&RecordBatch, &ExecutionPlanMetricsSet) -> ();

pub(crate) struct MetricObserverExec {
parent: Arc<dyn ExecutionPlan>,
id: String,
metrics: ExecutionPlanMetricsSet,
update: MetricObserverFunction,
}

impl MetricObserverExec {
pub fn new(id: String, parent: Arc<dyn ExecutionPlan>, f: MetricObserverFunction) -> Self {
MetricObserverExec {
parent,
id,
metrics: ExecutionPlanMetricsSet::new(),
update: f,
}
}

pub fn try_new(
id: String,
inputs: &[Arc<dyn ExecutionPlan>],
f: MetricObserverFunction,
) -> DataFusionResult<Arc<dyn ExecutionPlan>> {
match inputs {
[input] => Ok(Arc::new(MetricObserverExec::new(id, input.clone(), f))),
_ => Err(datafusion_common::DataFusionError::External(Box::new(
DeltaTableError::Generic("MetricObserverExec expects only one child".into()),
))),
}
}

pub fn id(&self) -> &str {
&self.id
}
}

impl std::fmt::Debug for MetricObserverExec {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.debug_struct("MetricObserverExec")
.field("id", &self.id)
.field("metrics", &self.metrics)
.finish()
}
}

impl DisplayAs for MetricObserverExec {
fn fmt_as(
&self,
_: datafusion::physical_plan::DisplayFormatType,
f: &mut std::fmt::Formatter,
) -> std::fmt::Result {
write!(f, "MetricObserverExec id={}", self.id)
}
}

impl ExecutionPlan for MetricObserverExec {
fn as_any(&self) -> &dyn std::any::Any {
self
}

fn schema(&self) -> arrow_schema::SchemaRef {
self.parent.schema()
}

fn output_partitioning(&self) -> datafusion::physical_plan::Partitioning {
self.parent.output_partitioning()
}

fn output_ordering(&self) -> Option<&[datafusion_physical_expr::PhysicalSortExpr]> {
self.parent.output_ordering()
}

fn children(&self) -> Vec<Arc<dyn ExecutionPlan>> {
vec![self.parent.clone()]
}

fn execute(
&self,
partition: usize,
context: Arc<datafusion::execution::context::TaskContext>,
) -> datafusion_common::Result<datafusion::physical_plan::SendableRecordBatchStream> {
let res = self.parent.execute(partition, context)?;
Ok(Box::pin(MetricObserverStream {
schema: self.schema(),
input: res,
metrics: self.metrics.clone(),
update: self.update,
}))
}

fn statistics(&self) -> DataFusionResult<datafusion_common::Statistics> {
self.parent.statistics()
}

fn with_new_children(
self: Arc<Self>,
children: Vec<Arc<dyn ExecutionPlan>>,
) -> datafusion_common::Result<Arc<dyn ExecutionPlan>> {
MetricObserverExec::try_new(self.id.clone(), &children, self.update)
}

fn metrics(&self) -> Option<MetricsSet> {
Some(self.metrics.clone_inner())
}
}

struct MetricObserverStream {
schema: SchemaRef,
input: SendableRecordBatchStream,
metrics: ExecutionPlanMetricsSet,
update: MetricObserverFunction,
}

impl Stream for MetricObserverStream {
type Item = DataFusionResult<RecordBatch>;

fn poll_next(
mut self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Option<Self::Item>> {
self.input.poll_next_unpin(cx).map(|x| match x {
Some(Ok(batch)) => {
(self.update)(&batch, &self.metrics);
Some(Ok(batch))
}
other => other,
})
}

fn size_hint(&self) -> (usize, Option<usize>) {
self.input.size_hint()
}
}

impl RecordBatchStream for MetricObserverStream {
fn schema(&self) -> SchemaRef {
self.schema.clone()
}
}

pub(crate) fn find_metric_node(
id: &str,
parent: &Arc<dyn ExecutionPlan>,
) -> Option<Arc<dyn ExecutionPlan>> {
//! Used to locate the physical MetricCountExec Node after the planner converts the logical node
if let Some(metric) = parent.as_any().downcast_ref::<MetricObserverExec>() {
if metric.id().eq(id) {
return Some(parent.to_owned());
}
}

for child in &parent.children() {
let res = find_metric_node(id, child);
if res.is_some() {
return res;
}
}

None
}
Loading
Loading