This is a Wordseer-specific fork of Dustin Smith's stanford-corenlp-python, a Python interface to Stanford CoreNLP. It can either use as python package, or run as a JSON-RPC server.
- Tested only with the current annotator configuration: not a general-purpose wrapper
- Update to Stanford CoreNLP v3.5.2
- Added multi-threaded load balancing
- Fix many bugs & improve performance
- Using jsonrpclib for stability and performance
- Can edit the constants as argument such as Stanford Core NLP directory
- Adjust parameters not to timeout in high load
- Fix a problem with long text input by Johannes Castner stanford-corenlp-python
- Packaging
- pexpect
- unidecode
- jsonrpclib (optionally)
To use this program you must download and unpack the zip file containing Stanford's CoreNLP package. By default, corenlp.py
looks for the Stanford Core NLP folder as a subdirectory of where the script is being run.
Then, to launch a server:
python corenlp/corenlp.py
Optionally, you can specify a host or port:
python corenlp/corenlp.py -H 0.0.0.0 -p 3456
For additional concurrency, you can add a load-balancing layer on top:
python corenlp/corenlp.py --ports=8081,8082,8083,8084
That will run a public JSON-RPC server on port 3456. And you can specify Stanford CoreNLP directory:
python corenlp/corenlp.py -S stanford-corenlp-full-2013-06-20/
Assuming you are running on port 8080 and CoreNLP directory is stanford-corenlp-full-2013-06-20/
in current directory, the code in client.py
shows an example parse:
import jsonrpclib
from simplejson import loads
server = jsonrpclib.Server("http://localhost:8080")
result = loads(server.parse("Hello world. It is so beautiful"))
print "Result", result
If you are using the load balancing component, then you can use the following approach:
import jsonrpclib
from simplejson import loads
server = jsonrpclib.Server("http://localhost:8080")
result = loads(server.send("Hello world. It is so beautiful"))
print "Result", server.getForKey(result['key'])
# asynchronous parsing and retrieval
sents = [ 'add in as many sentences as you want', 'your mileage may vary' ]
for sent in sents:
server.send(sent)
# this approach is non-blocking
print server.getCompleted()
# this approach waits for all in-progress parses to finish (i.e. blocks)
print server.getAll()
That returns a dictionary containing the keys sentences
and (when applicable) corefs
. The key sentences
contains a list of dictionaries for each sentence, which contain parsetree
, text
, tuples
containing the dependencies, and words
, containing information about parts of speech, NER, etc:
{u'sentences': [{u'parsetree': u'(ROOT (S (VP (NP (INTJ (UH Hello)) (NP (NN world)))) (. !)))',
u'text': u'Hello world!',
u'tuples': [[u'dep', u'world', u'Hello'],
[u'root', u'ROOT', u'world']],
u'words': [[u'Hello',
{u'CharacterOffsetBegin': u'0',
u'CharacterOffsetEnd': u'5',
u'Lemma': u'hello',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'UH'}],
[u'world',
{u'CharacterOffsetBegin': u'6',
u'CharacterOffsetEnd': u'11',
u'Lemma': u'world',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'NN'}],
[u'!',
{u'CharacterOffsetBegin': u'11',
u'CharacterOffsetEnd': u'12',
u'Lemma': u'!',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'.'}]]},
{u'parsetree': u'(ROOT (S (NP (PRP It)) (VP (VBZ is) (ADJP (RB so) (JJ beautiful))) (. .)))',
u'text': u'It is so beautiful.',
u'tuples': [[u'nsubj', u'beautiful', u'It'],
[u'cop', u'beautiful', u'is'],
[u'advmod', u'beautiful', u'so'],
[u'root', u'ROOT', u'beautiful']],
u'words': [[u'It',
{u'CharacterOffsetBegin': u'14',
u'CharacterOffsetEnd': u'16',
u'Lemma': u'it',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'PRP'}],
[u'is',
{u'CharacterOffsetBegin': u'17',
u'CharacterOffsetEnd': u'19',
u'Lemma': u'be',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'VBZ'}],
[u'so',
{u'CharacterOffsetBegin': u'20',
u'CharacterOffsetEnd': u'22',
u'Lemma': u'so',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'RB'}],
[u'beautiful',
{u'CharacterOffsetBegin': u'23',
u'CharacterOffsetEnd': u'32',
u'Lemma': u'beautiful',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'JJ'}],
[u'.',
{u'CharacterOffsetBegin': u'32',
u'CharacterOffsetEnd': u'33',
u'Lemma': u'.',
u'NamedEntityTag': u'O',
u'PartOfSpeech': u'.'}]]}],
u'coref': [[[[u'It', 1, 0, 0, 1], [u'Hello world', 0, 1, 0, 2]]]]}
Not to use JSON-RPC, load the module instead:
from corenlp import StanfordCoreNLP
corenlp_dir = "stanford-corenlp-full-2013-06-20/"
corenlp = StanfordCoreNLP(corenlp_dir) # wait a few minutes...
corenlp.raw_parse("Parse it")
If you need to parse long texts (more than 30-50 sentences), you must use a batch_parse
function. It reads text files from input directory and returns a generator object of dictionaries parsed each file results:
from corenlp import batch_parse
corenlp_dir = "stanford-corenlp-full-2013-06-20/"
raw_text_directory = "sample_raw_text/"
parsed = batch_parse(raw_text_directory, corenlp_dir) # It returns a generator object
print parsed #=> [{'coref': ..., 'sentences': ..., 'file_name': 'new_sample.txt'}]
The function uses XML output feature of Stanford CoreNLP, and you can take all information by raw_output
option. If true, CoreNLP's XML is returned as a dictionary without converting the format.
parsed = batch_parse(raw_text_directory, corenlp_dir, raw_output=True)
(note: The function requires xmltodict now, you should install it by sudo pip install xmltodict
)
- Hiroyoshi Komatsu [[email protected]]
- Johannes Castner [[email protected]]
- Robert Elwell [[email protected]]
- Tristan Chong [[email protected]]
- Aditi Muralidharan [[email protected]]
- Ian MacFarland [[email protected]]