Skip to content

Commit

Permalink
Apply minor fixes to README
Browse files Browse the repository at this point in the history
PiperOrigin-RevId: 279101132
  • Loading branch information
drao2 authored and diegolascasas committed Nov 19, 2019
1 parent f309fea commit 656f93a
Show file tree
Hide file tree
Showing 10 changed files with 2,499 additions and 0 deletions.
35 changes: 35 additions & 0 deletions curl/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
# Continual Unsupervised Representation Learning (CURL)

This repository contains code to accompany the NeurIPS 2019 submission on
Continual Unsupervised Representation Learning (CURL).

The experiments in the paper can be reproduced by running one of the three
different training scripts:


`train_sup.py`: to run the supervised continual learning benchmark

`train_unsup.py`: to run the unsupervised i.i.d learning benchmark

`train_main.py`: to run all other experiments in the paper (with details in the
file on what to change)

In each of these cases, the cluster accuracy / purity and k-NN error are logged
to the terminal, and other quantities can be accessed from training.py
(e.g. the confusion matrix can be found in `results['test_confusion']`).

We recommend running these scripts in a Python
[virtual environment](https://docs.python.org/3/tutorial/venv.html):

(Assuming python3-dev is installed in your system)

```console
python3 -m venv .curl_venv
source .curl_venv/bin/activate
pip install wheel
pip install -r requirements.txt

PYTHONPATH=`pwd`/..:$PYTHONPATH python3 train_main.py --dataset='mnist'

Run `deactivate` to exit the virtual environment.
```
120 changes: 120 additions & 0 deletions curl/layers.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
################################################################################
# Copyright 2019 DeepMind Technologies Limited
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
################################################################################
"""Custom layers for CURL."""

from absl import logging
import sonnet as snt
import tensorflow as tf

tfc = tf.compat.v1


class ResidualStack(snt.AbstractModule):
"""A stack of ResNet V2 blocks."""

def __init__(self,
num_hiddens,
num_residual_layers,
num_residual_hiddens,
filter_size=3,
initializers=None,
data_format='NHWC',
activation=tf.nn.relu,
name='residual_stack'):
"""Instantiate a ResidualStack."""
super(ResidualStack, self).__init__(name=name)
self._num_hiddens = num_hiddens
self._num_residual_layers = num_residual_layers
self._num_residual_hiddens = num_residual_hiddens
self._filter_size = filter_size
self._initializers = initializers
self._data_format = data_format
self._activation = activation

def _build(self, h):
for i in range(self._num_residual_layers):
h_i = self._activation(h)

h_i = snt.Conv2D(
output_channels=self._num_residual_hiddens,
kernel_shape=(self._filter_size, self._filter_size),
stride=(1, 1),
initializers=self._initializers,
data_format=self._data_format,
name='res_nxn_%d' % i)(
h_i)
h_i = self._activation(h_i)

h_i = snt.Conv2D(
output_channels=self._num_hiddens,
kernel_shape=(1, 1),
stride=(1, 1),
initializers=self._initializers,
data_format=self._data_format,
name='res_1x1_%d' % i)(
h_i)
h += h_i
return self._activation(h)


class SharedConvModule(snt.AbstractModule):
"""Convolutional decoder."""

def __init__(self,
filters,
kernel_size,
activation,
strides,
name='shared_conv_encoder'):
super(SharedConvModule, self).__init__(name=name)

self._filters = filters
self._kernel_size = kernel_size
self._activation = activation
self.strides = strides
assert len(strides) == len(filters) - 1
self.conv_shapes = None

def _build(self, x, is_training=True):
with tf.control_dependencies([tfc.assert_rank(x, 4)]):

self.conv_shapes = [x.shape.as_list()] # Needed by deconv module
conv = x
for i, (filter_i,
stride_i) in enumerate(zip(self._filters, self.strides), 1):
conv = tf.layers.Conv2D(
filters=filter_i,
kernel_size=self._kernel_size,
padding='same',
activation=self._activation,
strides=stride_i,
name='enc_conv_%d' % i)(
conv)
self.conv_shapes.append(conv.shape.as_list())
conv_flat = snt.BatchFlatten()(conv)

enc_mlp = snt.nets.MLP(
name='enc_mlp',
output_sizes=[self._filters[-1]],
activation=self._activation,
activate_final=True)
h = enc_mlp(conv_flat)

logging.info('Shared conv module layer shapes:')
logging.info('\n'.join([str(el) for el in self.conv_shapes]))
logging.info(h.shape.as_list())

return h
Loading

0 comments on commit 656f93a

Please sign in to comment.