Skip to content

Can a Word2Vec model predict art-historical categories given a corpus of exhibitions?

Notifications You must be signed in to change notification settings

disposableraft/the-curator

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

The Curator

Blog Posts

Benchmarks

 version      mean    stddev  epochs  size  sg train time  vocab  labeled  topn    
   1.8.2  0.731169  0.400759      10   100   1      1337s   1011      415     2     
   1.9.2  0.757323  0.381546       8   100   0       895s   1011      415     2     
   1.8.1  0.777375  0.311037      10   100   1      1337s   1011      415     5     
   2.2.0  0.777560  0.348724       4   100   1      4699s   4481     1065     5     
   2.1.0  0.784135  0.327790      10   100   0      8509s   4481     1065     5     
   1.9.1  0.790879  0.303636       8   100   0       895s   1011      415     5     
   2.0.0  0.793170  0.323632       4   100   0      3559s   4481     1065     5     
   3.1.0  0.797092  0.275271      10   100   0        45s    866     1065     5     
     1.9  0.801539  0.251177       8   100   0       895s   1011      415    10     
     1.6  0.802802  0.246046       5   100   0       556s   1011      415    10     
     1.7  0.803727  0.270047       5   100   1       687s   1011      415    10     
     1.5  0.804970  0.276699       6   100   1       882s   1011      415    10     
   3.0.0  0.805366  0.261353       4   100   0        19s    866     1065     5     
     1.8  0.808020  0.267684      10   100   1      1337s   1011      415    10     
     1.4  0.811572  0.245559       6   100   0       687s   1011      415    10     
     1.2  0.817391  0.274402       3   100   1       435s   1011      415    10     
     1.3  0.817779  0.232192       3   100   0       347s   1011      415    10     
     1.1  0.828783  0.233289       1   100   0       118s   1011      415    10     
     1.0  0.833424  0.258153       1   100   1       151s   1011      415    10     
    1.10  0.845832  0.215527       1    10   0       112s   1011      415    10 

Versions

<dataset>.<iteration>.<variation>

Dataset 1

Labeled and unlabled terms from the MoMA dataset.

Dataset 2

Labeled and unlabled terms from the MoMA and DOME datasets.

Dataset 3

Only labled terms from the MoMA and DOME datasets.

Usage

# Create or load an existing version.
# Versions follow the format `<dataset>.<iteration>.<variation>`.
>>> pipe = Pipeline('9.0.0')

# The current state
>>> pipe.get_state()
<class 'import_exhibitions.ImportExhibitions'>

# Get the version configurations
>>> pipe.version.config
{'combinations_r': 5,
 'epochs': 5,
 'min_count': 1,
 'pos': 0,
 'sg': 1,
 'size': 100,
 'states': ['ImportExhibitions',
            'Prune1',
            'LabelArtists',
            'Prune2',
            'ExportCorpus',
            'TrainModel',
            'ApplySimilar',
            'Report'],
 'topn': 5,
 'train_dir': 'data/train-9',
 'version': '9.0.0',
 'version_dir': 'data/versions/9.0.0',
 'workers': 5}

# Update the version configurations
>>> pipe.version.update_config(
  ('workers', 6), 
  ('size', 200), 
  ('sg', 0))

# Execute the current state and proceed to the next.
>>> pipe.proceed()

About

Can a Word2Vec model predict art-historical categories given a corpus of exhibitions?

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published