Skip to content

Commit

Permalink
Added deploy with modal.
Browse files Browse the repository at this point in the history
  • Loading branch information
dat-a-man committed Sep 13, 2024
1 parent 9e46b5c commit 3d327f2
Show file tree
Hide file tree
Showing 2 changed files with 155 additions and 0 deletions.
154 changes: 154 additions & 0 deletions docs/website/docs/walkthroughs/deploy-a-pipeline/deploy-with-modal.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,154 @@
---
title: Deploy with Modal
description: How to deploy a pipeline with Modal
keywords: [how to, deploy a pipeline, Modal]
canonical: https://modal.com/blog/analytics-stack
---

# Deploy with Modal

## Introduction to Modal

[Modal](https://modal.com/blog/analytics-stack) is a high-performance serverless platform designed for developers, particularly those working in data, AI, and machine learning (ML). It allows you to run and deploy code in the cloud without managing infrastructure.

With Modal, you can perform tasks like running generative AI models, large-scale batch jobs, and job queues, all while easily scaling compute resources.

### Modal features

- Serverless Compute: No infrastructure management; scales automatically from zero to thousands of CPUs/GPUs.
- Cloud Functions: Run Python code in the cloud instantly and scale horizontally.
- GPU/CPU Scaling: Easily attach GPUs for heavy tasks like AI model training with a single line of code.
- Web Endpoints: Expose any function as an HTTPS API endpoint quickly.
- Scheduled Jobs: Convert Python functions into scheduled tasks effortlessly.

To know more, please refer to [Kestra's documentation.](https://modal.com/docs)

## Building Data Pipelines with `dlt`

**`dlt`** is an open-source Python library that allows you to declaratively load data sources into well-structured tables or datasets. It does this through automatic schema inference and evolution. The library simplifies building data pipelines by providing functionality to support the entire extract and load process.

### How does `dlt` integrate with Modal for pipeline orchestration?

To illustrate setting up a pipeline in Modal, we’ll be using the following example: [Building a cost-effective analytics stack with Modal, dlt, and dbt.](https://modal.com/blog/analytics-stack)

The example demonstrates automating a workflow to load data from Postgres to Snowflake using `dlt`.

## How to run `dlt` on Modal

Here’s our `dlt` setup copying data from our Postgres read replica into Snowflake:

1. Run the `dlt` SQL database setup to initialize their `sql_database_pipeline.py` template:
```sh
dlt init sql_database snowflake
```
2. Open the file and define the Modal Image you want to run `dlt` in:
```py
import dlt
import pendulum

from sql_database import sql_database, ConnectionStringCredentials, sql_table

import modal
import os

image = (
modal.Image.debian_slim()
.apt_install(["libpq-dev"]) # system requirement for postgres driver
.pip_install(
"sqlalchemy>=1.4", # how `dlt` establishes connections
"dlt[snowflake]>=0.4.11",
"psycopg2-binary", # postgres driver
"dlt[parquet]",
"psutil==6.0.0", # for `dlt` logging
"connectorx", # creates arrow tables from database for fast data extraction
)
)

app = modal.App("dlt-postgres-pipeline", image=image)
```

3. Wrap the provided `load_table_from_database` with the Modal Function decorator, Modal Secrets containing your database credentials, and a daily cron schedule
```py
# Function to load the table from the database, scheduled to run daily
@app.function(
secrets=[
modal.Secret.from_name("snowflake-secret"),
modal.Secret.from_name("postgres-read-replica-prod"),
],
# run this pipeline daily at 6:24 AM
schedule=modal.Cron("24 6 * * *"),
timeout=3000,
)
def load_table_from_database(
table: str,
incremental_col: str,
dev: bool = False,
) -> None:
# Placeholder for future logic
pass
```

4. Write your `dlt` pipeline:
```py
# Modal Secrets are loaded as environment variables which are used here to create the SQLALchemy connection string
pg_url = f'postgresql://{os.environ["PGUSER"]}:{os.environ["PGPASSWORD"]}@localhost:{os.environ["PGPORT"]}/{os.environ["PGDATABASE"]}'
snowflake_url = f'snowflake://{os.environ["SNOWFLAKE_USER"]}:{os.environ["SNOWFLAKE_PASSWORD"]}@{os.environ["SNOWFLAKE_ACCOUNT"]}/{os.environ["SNOWFLAKE_DATABASE"]}'
# Create a pipeline
schema = "POSTGRES_DLT_DEV" if dev else "POSTGRES_DLT"
pipeline = dlt.pipeline(
pipeline_name="task",
destination=dlt.destinations.snowflake(snowflake_url),
dataset_name=schema,
progress="log",
)
credentials = ConnectionStringCredentials(pg_url)
# defines the postgres table to sync (in this case, the "task" table)
source_1 = sql_database(credentials, backend="connectorx").with_resources("task")
# defines which column to reference for incremental loading (i.e. only load newer rows)
source_1.task.apply_hints(
incremental=dlt.sources.incremental(
"enqueued_at",
initial_value=pendulum.datetime(2024, 7, 24, 0, 0, 0, tz="UTC"),
)
)

# if there are duplicates, merge the latest values
info = pipeline.run(source_1, write_disposition="merge")
print(info)
```

## Advanced configuration
### Modal Proxy

If your database is in a private VPN, you can use [Modal Proxy](https://modal.com/docs/reference/modal.Proxy) as a bastion server (only available to Enterprise customers). We use Modal Proxy to connect to our production read replica by attaching it to the Function definition and changing the hostname to localhost:
```py
@app.function(
secrets=[
modal.Secret.from_name("snowflake-secret"),
modal.Secret.from_name("postgres-read-replica-prod"),
],
schedule=modal.Cron("24 6 * * *"),
proxy=modal.Proxy.from_name("prod-postgres-proxy", environment_name="main"),
timeout=3000,
)
def task_pipeline(dev: bool = False) -> None:
pg_url = f'postgresql://{os.environ["PGUSER"]}:{os.environ["PGPASSWORD"]}@localhost:{os.environ["PGPORT"]}/{os.environ["PGDATABASE"]}'
```

### Capturing deletes

One limitation of our simple approach above is that it does not capture updates or deletions of data. This isn’t a hard requirement yet for our use cases, but it appears that `dlt` does have a [Postgres CDC replication feature](https://dlthub.com/docs/dlt-ecosystem/verified-sources/pg_replication) that we are considering.

### Scaling out

The example above syncs one table from our Postgres data source. In practice, we are syncing multiple tables and mapping each table copy job to a single container using [Modal.starmap](https://modal.com/docs/reference/modal.Function#starmap):
```py
@app.function(timeout=3000, schedule=modal.Cron("29 11 * * *"))
def main(dev: bool = False):
tables = [
("task", "enqueued_at", dev),
("worker", "launched_at", dev),
...
]
list(load_table_from_database.starmap(tables))
```
1 change: 1 addition & 0 deletions docs/website/sidebars.js
Original file line number Diff line number Diff line change
Expand Up @@ -283,6 +283,7 @@ const sidebars = {
'walkthroughs/deploy-a-pipeline/deploy-with-kestra',
'walkthroughs/deploy-a-pipeline/deploy-with-dagster',
'walkthroughs/deploy-a-pipeline/deploy-with-prefect',
'walkthroughs/deploy-a-pipeline/deploy-with-modal',
]
},
{
Expand Down

0 comments on commit 3d327f2

Please sign in to comment.