Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[doc] Mention data consistency for categorical features. #9678

Merged
merged 10 commits into from
Oct 24, 2023
Merged
9 changes: 6 additions & 3 deletions demo/guide-python/cat_in_the_dat.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,10 +11,13 @@
And the data can be found at:
https://www.kaggle.com/shahules/an-overview-of-encoding-techniques/data

Also, see the tutorial for using XGBoost with categorical data:
:doc:`/tutorials/categorical`.
.. versionadded:: 1.6.0

.. versionadded 1.6.0
See Also
--------
- :doc:`Tutorial </tutorials/categorical>`
- :ref:`sphx_glr_python_examples_categorical.py`
- :ref:`sphx_glr_python_examples_cat_pipeline.py`

"""

Expand Down
145 changes: 145 additions & 0 deletions demo/guide-python/cat_pipeline.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,145 @@
"""
Feature engineering pipeline for categorical data
=================================================

The script showcases how to keep the categorical data encoding consistent across
training and inference. There are many ways to attain the same goal, this script can be
used as a starting point.

See Also
--------
- :doc:`Tutorial </tutorials/categorical>`
- :ref:`sphx_glr_python_examples_categorical.py`
- :ref:`sphx_glr_python_examples_cat_in_the_dat.py`

"""
from typing import List, Tuple

import numpy as np
import pandas as pd
from sklearn.compose import make_column_selector, make_column_transformer
from sklearn.model_selection import train_test_split
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import OrdinalEncoder

import xgboost as xgb


def make_example_data() -> Tuple[pd.DataFrame, pd.Series, List[str]]:
"""Generate data for demo."""
n_samples = 2048
rng = np.random.default_rng(1994)

# We have three categorical features, while the rest are numerical.
categorical_features = ["brand_id", "retailer_id", "category_id"]

df = pd.DataFrame(
np.random.randint(32, 96, size=(n_samples, 3)),
columns=categorical_features,
)

df["price"] = rng.integers(100, 200, size=(n_samples,))
df["stock_status"] = rng.choice([True, False], n_samples)
df["on_sale"] = rng.choice([True, False], n_samples)
df["label"] = rng.normal(loc=0.0, scale=1.0, size=n_samples)

X = df.drop(["label"], axis=1)
y = df["label"]

return X, y, categorical_features


def native() -> None:
"""Using the native XGBoost interface."""
X, y, cat_feats = make_example_data()

X_train, X_test, y_train, y_test = train_test_split(
X, y, random_state=1994, test_size=0.2
)

# Create an encoder based on training data.
enc = OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=np.nan)
enc.set_output(transform="pandas")
enc = enc.fit(X_train[cat_feats])

def enc_transform(X: pd.DataFrame) -> pd.DataFrame:
# don't make change inplace so that we can have demonstrations for encoding
X = X.copy()
cat_cols = enc.transform(X[cat_feats])
for i, name in enumerate(cat_feats):
# create pd.Series based on the encoder
cat_cols[name] = pd.Categorical.from_codes(
codes=cat_cols[name].astype(np.int32), categories=enc.categories_[i]
)
X[cat_feats] = cat_cols
return X

# Encode the data based on fitted encoder.
X_train_enc = enc_transform(X_train)
X_test_enc = enc_transform(X_test)
# Train XGBoost model using the native interface.
Xy_train = xgb.QuantileDMatrix(X_train_enc, y_train, enable_categorical=True)
Xy_test = xgb.QuantileDMatrix(
X_test_enc, y_test, enable_categorical=True, ref=Xy_train
)
booster = xgb.train({}, Xy_train)
booster.predict(Xy_test)

# Following shows that data are encoded consistently.

# We first obtain result from newly encoded data
predt0 = booster.inplace_predict(enc_transform(X_train.head(16)))
# then we obtain result from already encoded data from training.
predt1 = booster.inplace_predict(X_train_enc.head(16))

np.testing.assert_allclose(predt0, predt1)


def pipeline() -> None:
"""Using the sklearn pipeline."""
X, y, cat_feats = make_example_data()

X_train, X_test, y_train, y_test = train_test_split(
X, y, random_state=3, test_size=0.2
)

enc = make_column_transformer(
(
OrdinalEncoder(handle_unknown="use_encoded_value", unknown_value=np.nan),
# all categorical feature names end with "_id"
make_column_selector(pattern=".*_id"),
),
remainder="passthrough",
verbose_feature_names_out=False,
)
# No need to set pandas output, we use `feature_types` to indicate the type of
# features.

# enc.set_output(transform="pandas")

feature_types = ["c" if fn in cat_feats else "q" for fn in X_train.columns]
reg = xgb.XGBRegressor(
feature_types=feature_types, enable_categorical=True, n_estimators=10
)
p = make_pipeline(enc, reg)
p.fit(X_train, y_train)
# check XGBoost is using the feature type correctly.
model_types = reg.get_booster().feature_types
assert model_types is not None
for a, b in zip(model_types, feature_types):
assert a == b

# Following shows that data are encoded consistently.

# We first create a slice of data that doesn't contain all the categories
predt0 = p.predict(X_train.iloc[:16, :])
# Then we use the dataframe that contains all the categories
predt1 = p.predict(X_train)[:16]

# The resulting encoding is the same
np.testing.assert_allclose(predt0, predt1)


if __name__ == "__main__":
pipeline()
native()
19 changes: 12 additions & 7 deletions demo/guide-python/categorical.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,10 +8,13 @@
which creates a sparse matrix and potentially increase memory usage. This demo
showcases the experimental categorical data support, more advanced features are planned.

Also, see :doc:`the tutorial </tutorials/categorical>` for using XGBoost with
categorical data.
.. versionadded:: 1.5.0

.. versionadded:: 1.5.0
See Also
--------
- :doc:`Tutorial </tutorials/categorical>`
- :ref:`sphx_glr_python_examples_cat_in_the_dat.py`
- :ref:`sphx_glr_python_examples_cat_pipeline.py`

"""
from typing import Tuple
Expand Down Expand Up @@ -52,11 +55,13 @@ def make_categorical(

def main() -> None:
# Use builtin categorical data support
# For scikit-learn interface, the input data must be pandas DataFrame or cudf
# DataFrame with categorical features

# For scikit-learn interface, the input data should be pandas DataFrame or cudf
# DataFrame with categorical features. If an numpy/cupy array is used instead, the
# `feature_types` for `XGBRegressor` should be set accordingly.
X, y = make_categorical(100, 10, 4, False)
# Specify `enable_categorical` to True, also we use onehot encoding based split
# here for demonstration. For details see the document of `max_cat_to_onehot`.
# Specify `enable_categorical` to True, also we use onehot-encoding-based split here
# for demonstration. For details see the document of `max_cat_to_onehot`.
reg = xgb.XGBRegressor(
tree_method="hist", enable_categorical=True, max_cat_to_onehot=5, device="cuda"
)
Expand Down
2 changes: 1 addition & 1 deletion doc/contrib/unit_tests.rst
Original file line number Diff line number Diff line change
Expand Up @@ -137,7 +137,7 @@ To build and run C++ unit tests enable tests while running CMake:
./testxgboost

Flags like ``USE_CUDA``, ``USE_DMLC_GTEST`` are optional. For more info about how to build
XGBoost from source, see :doc:`</build>`. One can also run all unit test using ctest tool
XGBoost from source, see :doc:`/build`. One can also run all unit tests using ctest tool
which provides higher flexibility. For example:

.. code-block:: bash
Expand Down
37 changes: 30 additions & 7 deletions doc/tutorials/categorical.rst
Original file line number Diff line number Diff line change
Expand Up @@ -94,11 +94,11 @@ Using native interface
**********************

The ``scikit-learn`` interface is user friendly, but lacks some features that are only
available in native interface. For instance users cannot compute SHAP value directly or
use quantized :class:`DMatrix <xgboost.DMatrix>`. Also native interface supports data
types other than dataframe, like ``numpy/cupy array``. To use the native interface with
categorical data, we need to pass the similar parameter to :class:`DMatrix
<xgboost.DMatrix>` and the :func:`train <xgboost.train>` function. For dataframe input:
available in native interface. For instance users cannot compute SHAP value directly.
Also native interface supports more data types. To use the native interface with
categorical data, we need to pass the similar parameter to :class:`~xgboost.DMatrix` or
:py:class:`~xgboost.QuantileDMatrix` and the :func:`train <xgboost.train>` function. For
dataframe input:

.. code:: python

Expand All @@ -117,7 +117,6 @@ SHAP value computation:
# categorical features are listed as "c"
print(booster.feature_types)


For other types of input, like ``numpy array``, we can tell XGBoost about the feature
types by using the ``feature_types`` parameter in :class:`DMatrix <xgboost.DMatrix>`:

Expand All @@ -131,7 +130,31 @@ types by using the ``feature_types`` parameter in :class:`DMatrix <xgboost.DMatr

For numerical data, the feature type can be ``"q"`` or ``"float"``, while for categorical
feature it's specified as ``"c"``. The Dask module in XGBoost has the same interface so
:class:`dask.Array <dask.Array>` can also be used for categorical data.
:class:`dask.Array <dask.Array>` can also be used for categorical data. Lastly, the
sklearn interface :py:class:`~xgboost.XGBRegressor` has the same parameter.

****************
Data Consistency
****************

XGBoost accepts parameters to indicate which feature is considered categorical, either through the ``dtypes`` of a dataframe or through the ``feature_types`` parameter. However, XGBoost by itself doesn't store information on how categories are encoded in the first place. For instance, given an encoding schema that maps music genres to integer codes:

.. code-block:: python

{"acoustic": 0, "indie": 1, "blues": 2, "country": 3}

XGBoost doesn't know this mapping from the input and hence cannot store it in the model. The mapping usually happens in the users' data engineering pipeline with column transformers like :py:class:`sklearn.preprocessing.OrdinalEncoder`. To make sure correct result from XGBoost, users need to keep the pipeline for transforming data consistent across training and testing data. One should watch out for errors like:

.. code-block:: python

X_train["genre"] = X_train["genre"].astype("category")
reg = xgb.XGBRegressor(enable_categorical=True).fit(X_train, y_train)

# invalid encoding
X_test["genre"] = X_test["genre"].astype("category")
reg.predict(X_test)

In the above snippet, training data and test data are encoded separately, resulting in two different encoding schemas and invalid prediction result. See :ref:`sphx_glr_python_examples_cat_pipeline.py` for a worked example using ordinal encoder.

*************
Miscellaneous
Expand Down
2 changes: 1 addition & 1 deletion python-package/xgboost/testing/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -818,7 +818,7 @@ class DirectoryExcursion:

"""

def __init__(self, path: os.PathLike, cleanup: bool = False):
def __init__(self, path: Union[os.PathLike, str], cleanup: bool = False):
self.path = path
self.curdir = os.path.normpath(os.path.abspath(os.path.curdir))
self.cleanup = cleanup
Expand Down
5 changes: 5 additions & 0 deletions tests/ci_build/lint_python.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@ class LintersPaths:
"tests/python/test_config.py",
"tests/python/test_data_iterator.py",
"tests/python/test_dt.py",
"tests/python/test_demos.py",
"tests/python/test_predict.py",
"tests/python/test_quantile_dmatrix.py",
"tests/python/test_tree_regularization.py",
Expand All @@ -39,6 +40,7 @@ class LintersPaths:
"demo/guide-python/cat_in_the_dat.py",
"demo/guide-python/callbacks.py",
"demo/guide-python/categorical.py",
"demo/guide-python/cat_pipeline.py",
"demo/guide-python/feature_weights.py",
"demo/guide-python/sklearn_parallel.py",
"demo/guide-python/spark_estimator_examples.py",
Expand Down Expand Up @@ -77,6 +79,7 @@ class LintersPaths:
"python-package/",
# tests
"tests/python/test_dt.py",
"tests/python/test_demos.py",
"tests/python/test_data_iterator.py",
"tests/python-gpu/test_gpu_data_iterator.py",
"tests/python-gpu/load_pickle.py",
Expand All @@ -87,6 +90,8 @@ class LintersPaths:
"demo/json-model/json_parser.py",
"demo/guide-python/external_memory.py",
"demo/guide-python/cat_in_the_dat.py",
"demo/guide-python/categorical.py",
"demo/guide-python/cat_pipeline.py",
"demo/guide-python/feature_weights.py",
"demo/guide-python/individual_trees.py",
"demo/guide-python/quantile_regression.py",
Expand Down
Loading