Skip to content
/ stox Public

A Python Module That Uses ANN To Predict A Stocks Price And Also Provides Accurate Technical Analysis With Many High Potential Implementations!

License

Notifications You must be signed in to change notification settings

dopevog/stox

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ff0db66 · Jun 21, 2021

History

69 Commits
May 27, 2021
May 31, 2021
May 31, 2021
May 26, 2021
Jun 21, 2021
May 31, 2021
May 22, 2021
May 23, 2021

Repository files navigation

Stox

⚡ A Python Module For The Stock Market ⚡

A Module to predict the "close price" for the next day and give "technical analysis". It uses a Neural Network and the LSTM algorithm to predict the price. It uses a technical indicator algorithm developed by the Stox team for technical analysis.

Installation

Get it from PyPi:

pip3 install stox

Clone it from github:

git clone https://github.com/dopevog/stox.git
cd stox
python3 setup.py install

Usage

Arguments:

    stock (str): stock ticker symbol
    output (str): 'list' or 'message' (Format Of Output)
    years (int or float): years of data to be considered
    chart (bool): generate performance plot

Returns:

List:

[company name, current price, predicted price, technical analysis, date (For)]

Message:

company name
current price
predicted price
technical analysis
data (for)

Examples:

Basic

import stox

script = input("Stock Ticker Symbol: ")
data = stox.stox.exec(script,'list')

print(data)
$ stox> python3 main.py
$ Stock Ticker Symbol: AAPL
$ ['Apple Inc.', 125.43000030517578, 124.91, 'Bearish (Already)', '2021-05-24']

Intermediate

import stox
import pandas as pd

stock_list = pd.read_csv("SPX500.csv") 
df = stock_list 
number_of_stocks = 505 
x = 0
while x < number_of_stocks:
    ticker = stock_list.iloc[x]["Symbols"]
    data = stox.stox.exec(ticker,'list')
    df['Price'] = data[1] 
    df['Prediction'] = data[2]
    df['Analysis'] = data[3]
    df['DateFor'] = data[4]
    if data[2] - data[1]  >= data[1]  * 0.02:
        if data[3] == "Bullish (Starting)":
            df['Signal'] = "Buy"
        elif data[3] == "Bullish (Already)":
            df['Signal'] = "Up"
    elif data[2] - data[1]  <= data[1]  * -0.02:
        if data[3] == "Bearish (Starting)":
            df['Signal'] = "Sell"
        elif data[3] == "Bearish (Already)":
            df['Signal'] = "Down"
    else:
        df['Signal'] = "None"
    x = x+1
df.to_csv("output.csv") 
print("Done") 
$ stox> python3 main.py
$ Done

More Examples Including These Ones Can Be Found Here

Possible Implentations

  • Algorithmic Trading
  • Single Stock Analysis
  • Multistock Analysis
  • And Much More!

Credits

License

This Project Has Been MIT Licensed

About

A Python Module That Uses ANN To Predict A Stocks Price And Also Provides Accurate Technical Analysis With Many High Potential Implementations!

Topics

Resources

License

Stars

Watchers

Forks

Sponsor this project

Languages