Skip to content

dpbnasika/dlops_pipeline

Folders and files

NameName
Last commit message
Last commit date

Latest commit

b2bc0dd · Mar 11, 2025

History

2 Commits
Mar 11, 2025
Mar 11, 2025
Mar 11, 2025
Mar 11, 2025
Mar 11, 2025
Mar 11, 2025
Mar 11, 2025
Mar 11, 2025
Mar 11, 2025
Mar 11, 2025
Mar 11, 2025
Mar 11, 2025
Mar 11, 2025

Repository files navigation

A time-efficient YOLO pipeline project for object detection models

A full-scale, object-oriented pipeline for data preprocessing, training, predicting, and exporting YOLO models with Firebase integration.

Features

  • Google Firebase integration for dataset retrieval
  • Automatic dataset organization and splitting
  • YOLO model training with configurable parameters
  • Model inference and export functionality
  • Continuous monitoring of Firebase for new data
  • Pipeline automation based on new data threshold

Project Structure

yolo_pipeline/
├── config/             # Configuration settings
├── data/               # Data management (Firebase, dataset)
├── models/             # YOLO model operations
├── utils/              # Utility functions
├── pipeline/           # Pipeline orchestration
├── tests/              # Unit tests
├── main.py             # Entry point
├── requirements.txt    # Project dependencies
└── README.md           # Project documentation

Setup

  1. Create a Python virtual environment:

    python -m venv venv
    source venv/bin/activate  # On Windows: venv\Scripts\activate
  2. Install dependencies:

    pip install -r requirements.txt
  3. Set up Firebase credentials:

    • open .env file
    • Set the GOOGLE_APPLICATION_CREDENTIALS environment variable to point to your Firebase credentials JSON file
  4. Source the environment variables:

    source .env   
  5. Run it using various arguments:

    python3 main.py --monitor --debug --run --test-image=test_images/strawberry.png
  6. The results will be present in the data_storage folder under predict and you could use the .torchscript with the cpp script and libtorch library for faster inferencing.

About

End to End DeepLearning Ops Pipeline

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages