Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix(deps): update dependency numpy to v1.22.0 [security] #503

Open
wants to merge 1 commit into
base: develop
Choose a base branch
from

Conversation

renovate[bot]
Copy link

@renovate renovate bot commented Jul 23, 2023

This PR contains the following updates:

Package Change Age Adoption Passing Confidence
numpy (source, changelog) 1.21.1 -> 1.22.0 age adoption passing confidence

GitHub Vulnerability Alerts

CVE-2021-34141

Incomplete string comparison in the numpy.core component in NumPy1.9.x, which allows attackers to fail the APIs via constructing specific string objects.


Release Notes

numpy/numpy (numpy)

v1.22.0

Compare Source

NumPy 1.22.0 Release Notes

NumPy 1.22.0 is a big release featuring the work of 153 contributors
spread over 609 pull requests. There have been many improvements,
highlights are:

  • Annotations of the main namespace are essentially complete. Upstream
    is a moving target, so there will likely be further improvements,
    but the major work is done. This is probably the most user visible
    enhancement in this release.
  • A preliminary version of the proposed Array-API is provided. This is
    a step in creating a standard collection of functions that can be
    used across application such as CuPy and JAX.
  • NumPy now has a DLPack backend. DLPack provides a common interchange
    format for array (tensor) data.
  • New methods for quantile, percentile, and related functions. The
    new methods provide a complete set of the methods commonly found in
    the literature.
  • A new configurable allocator for use by downstream projects.

These are in addition to the ongoing work to provide SIMD support for
commonly used functions, improvements to F2PY, and better documentation.

The Python versions supported in this release are 3.8-3.10, Python 3.7
has been dropped. Note that 32 bit wheels are only provided for Python
3.8 and 3.9 on Windows, all other wheels are 64 bits on account of
Ubuntu, Fedora, and other Linux distributions dropping 32 bit support.
All 64 bit wheels are also linked with 64 bit integer OpenBLAS, which should fix
the occasional problems encountered by folks using truly huge arrays.

Expired deprecations

Deprecated numeric style dtype strings have been removed

Using the strings "Bytes0", "Datetime64", "Str0", "Uint32",
and "Uint64" as a dtype will now raise a TypeError.

(gh-19539)

Expired deprecations for loads, ndfromtxt, and mafromtxt in npyio

numpy.loads was deprecated in v1.15, with the recommendation that
users use pickle.loads instead. ndfromtxt and mafromtxt were both
deprecated in v1.17 - users should use numpy.genfromtxt instead with
the appropriate value for the usemask parameter.

(gh-19615)

Deprecations

Use delimiter rather than delimitor as kwarg in mrecords

The misspelled keyword argument delimitor of
numpy.ma.mrecords.fromtextfile() has been changed to delimiter,
using it will emit a deprecation warning.

(gh-19921)

Passing boolean kth values to (arg-)partition has been deprecated

numpy.partition and numpy.argpartition would previously accept
boolean values for the kth parameter, which would subsequently be
converted into integers. This behavior has now been deprecated.

(gh-20000)

The np.MachAr class has been deprecated

The numpy.MachAr class and finfo.machar <numpy.finfo> attribute have
been deprecated. Users are encouraged to access the property if interest
directly from the corresponding numpy.finfo attribute.

(gh-20201)

Compatibility notes

Distutils forces strict floating point model on clang

NumPy now sets the -ftrapping-math option on clang to enforce correct
floating point error handling for universal functions. Clang defaults to
non-IEEE and C99 conform behaviour otherwise. This change (using the
equivalent but newer -ffp-exception-behavior=strict) was attempted in
NumPy 1.21, but was effectively never used.

(gh-19479)

Removed floor division support for complex types

Floor division of complex types will now result in a TypeError

>>> a = np.arange(10) + 1j* np.arange(10)
>>> a // 1
TypeError: ufunc 'floor_divide' not supported for the input types...

(gh-19135)

numpy.vectorize functions now produce the same output class as the base function

When a function that respects numpy.ndarray subclasses is vectorized
using numpy.vectorize, the vectorized function will now be
subclass-safe also for cases that a signature is given (i.e., when
creating a gufunc): the output class will be the same as that returned
by the first call to the underlying function.

(gh-19356)

Python 3.7 is no longer supported

Python support has been dropped. This is rather strict, there are
changes that require Python >= 3.8.

(gh-19665)

str/repr of complex dtypes now include space after punctuation

The repr of
np.dtype({"names": ["a"], "formats": [int], "offsets": [2]}) is now
dtype({'names': ['a'], 'formats': ['<i8'], 'offsets': [2], 'itemsize': 10}),
whereas spaces where previously omitted after colons and between fields.

The old behavior can be restored via
np.set_printoptions(legacy="1.21").

(gh-19687)

Corrected advance in PCG64DSXM and PCG64

Fixed a bug in the advance method of PCG64DSXM and PCG64. The bug
only affects results when the step was larger than $2^{64}$ on platforms
that do not support 128-bit integers(e.g., Windows and 32-bit Linux).

(gh-20049)

Change in generation of random 32 bit floating point variates

There was bug in the generation of 32 bit floating point values from the
uniform distribution that would result in the least significant bit of
the random variate always being 0. This has been fixed.

This change affects the variates produced by the random.Generator
methods random, standard_normal, standard_exponential, and
standard_gamma, but only when the dtype is specified as
numpy.float32.

(gh-20314)

C API changes

Masked inner-loops cannot be customized anymore

The masked inner-loop selector is now never used. A warning will be
given in the unlikely event that it was customized.

We do not expect that any code uses this. If you do use it, you must
unset the selector on newer NumPy version. Please also contact the NumPy
developers, we do anticipate providing a new, more specific, mechanism.

The customization was part of a never-implemented feature to allow for
faster masked operations.

(gh-19259)

New Features

NEP 49 configurable allocators

As detailed in NEP 49, the
function used for allocation of the data segment of a ndarray can be
changed. The policy can be set globally or in a context. For more
information see the NEP and the data_memory{.interpreted-text
role="ref"} reference docs. Also add a NUMPY_WARN_IF_NO_MEM_POLICY
override to warn on dangerous use of transfering ownership by setting
NPY_ARRAY_OWNDATA.

(gh-17582)

Implementation of the NEP 47 (adopting the array API standard)

An initial implementation of NEP47, adoption
of the array API standard, has been added as numpy.array_api. The
implementation is experimental and will issue a UserWarning on import,
as the array API standard is still in
draft state. numpy.array_api is a conforming implementation of the
array API standard, which is also minimal, meaning that only those
functions and behaviors that are required by the standard are
implemented (see the NEP for more info). Libraries wishing to make use
of the array API standard are encouraged to use numpy.array_api to
check that they are only using functionality that is guaranteed to be
present in standard conforming implementations.

(gh-18585)

Generate C/C++ API reference documentation from comments blocks is now possible

This feature depends on Doxygen in
the generation process and on
Breathe to integrate it
with Sphinx.

(gh-18884)

Assign the platform-specific c_intp precision via a mypy plugin

The mypy plugin, introduced in
numpy/numpy#17843, has
again been expanded: the plugin now is now responsible for setting the
platform-specific precision of numpy.ctypeslib.c_intp, the latter
being used as data type for various numpy.ndarray.ctypes attributes.

Without the plugin, aforementioned type will default to
ctypes.c_int64.

To enable the plugin, one must add it to their mypy configuration
file
:

[mypy]
plugins = numpy.typing.mypy_plugin

(gh-19062)

Add NEP 47-compatible dlpack support

Add a ndarray.__dlpack__() method which returns a dlpack C structure
wrapped in a PyCapsule. Also add a np._from_dlpack(obj) function,
where obj supports __dlpack__(), and returns an ndarray.

(gh-19083)

keepdims optional argument added to numpy.argmin, numpy.argmax

keepdims argument is added to numpy.argmin, numpy.argmax. If set
to True, the axes which are reduced are left in the result as
dimensions with size one. The resulting array has the same number of
dimensions and will broadcast with the input array.

(gh-19211)

bit_count to compute the number of 1-bits in an integer

Computes the number of 1-bits in the absolute value of the input. This
works on all the numpy integer types. Analogous to the builtin
int.bit_count or popcount in C++.

>>> np.uint32(1023).bit_count()
10
>>> np.int32(-127).bit_count()
7

(gh-19355)

The ndim and axis attributes have been added to numpy.AxisError

The ndim and axis parameters are now also stored as attributes
within each numpy.AxisError instance.

(gh-19459)

Preliminary support for windows/arm64 target

numpy added support for windows/arm64 target. Please note OpenBLAS
support is not yet available for windows/arm64 target.

(gh-19513)

Added support for LoongArch

LoongArch is a new instruction set, numpy compilation failure on
LoongArch architecture, so add the commit.

(gh-19527)

A .clang-format file has been added

Clang-format is a C/C++ code formatter, together with the added
.clang-format file, it produces code close enough to the NumPy
C_STYLE_GUIDE for general use. Clang-format version 12+ is required
due to the use of several new features, it is available in Fedora 34 and
Ubuntu Focal among other distributions.

(gh-19754)

is_integer is now available to numpy.floating and numpy.integer

Based on its counterpart in Python float and int, the numpy floating
point and integer types now support float.is_integer. Returns True
if the number is finite with integral value, and False otherwise.

>>> np.float32(-2.0).is_integer()
True
>>> np.float64(3.2).is_integer()
False
>>> np.int32(-2).is_integer()
True

(gh-19803)

Symbolic parser for Fortran dimension specifications

A new symbolic parser has been added to f2py in order to correctly parse
dimension specifications. The parser is the basis for future
improvements and provides compatibility with Draft Fortran 202x.

(gh-19805)

ndarray, dtype and number are now runtime-subscriptable

Mimicking PEP-585, the numpy.ndarray,
numpy.dtype and numpy.number classes are now subscriptable for
python 3.9 and later. Consequently, expressions that were previously
only allowed in .pyi stub files or with the help of
from __future__ import annotations are now also legal during runtime.

>>> import numpy as np
>>> from typing import Any

>>> np.ndarray[Any, np.dtype[np.float64]]
numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]

(gh-19879)

Improvements

ctypeslib.load_library can now take any path-like object

All parameters in the can now take any
python:path-like object{.interpreted-text role="term"}. This includes
the likes of strings, bytes and objects implementing the
__fspath__<os.PathLike.__fspath__>{.interpreted-text role="meth"}
protocol.

(gh-17530)

Add smallest_normal and smallest_subnormal attributes to finfo

The attributes smallest_normal and smallest_subnormal are available
as an extension of finfo class for any floating-point data type. To
use these new attributes, write np.finfo(np.float64).smallest_normal
or np.finfo(np.float64).smallest_subnormal.

(gh-18536)

numpy.linalg.qr accepts stacked matrices as inputs

numpy.linalg.qr is able to produce results for stacked matrices as
inputs. Moreover, the implementation of QR decomposition has been
shifted to C from Python.

(gh-19151)

numpy.fromregex now accepts os.PathLike implementations

numpy.fromregex now accepts objects implementing the
__fspath__<os.PathLike> protocol, e.g. pathlib.Path.

(gh-19680)

Add new methods for quantile and percentile

quantile and percentile now have have a method= keyword argument
supporting 13 different methods. This replaces the interpolation=
keyword argument.

The methods are now aligned with nine methods which can be found in
scientific literature and the R language. The remaining methods are the
previous discontinuous variations of the default "linear" one.

Please see the documentation of numpy.percentile for more information.

(gh-19857)

Missing parameters have been added to the nan<x> functions

A number of the nan<x> functions previously lacked parameters that
were present in their <x>-based counterpart, e.g. the where
parameter was present in numpy.mean but absent from numpy.nanmean.

The following parameters have now been added to the nan<x> functions:

  • nanmin: initial & where
  • nanmax: initial & where
  • nanargmin: keepdims & out
  • nanargmax: keepdims & out
  • nansum: initial & where
  • nanprod: initial & where
  • nanmean: where
  • nanvar: where
  • nanstd: where

(gh-20027)

Annotating the main Numpy namespace

Starting from the 1.20 release, PEP 484 type annotations have been
included for parts of the NumPy library; annotating the remaining
functions being a work in progress. With the release of 1.22 this
process has been completed for the main NumPy namespace, which is now
fully annotated.

Besides the main namespace, a limited number of sub-packages contain
annotations as well. This includes, among others, numpy.testing,
numpy.linalg and numpy.random (available since 1.21).

(gh-20217)

Vectorize umath module using AVX-512

By leveraging Intel Short Vector Math Library (SVML), 18 umath functions
(exp2, log2, log10, expm1, log1p, cbrt, sin, cos, tan,
arcsin, arccos, arctan, sinh, cosh, tanh, arcsinh,
arccosh, arctanh) are vectorized using AVX-512 instruction set for
both single and double precision implementations. This change is
currently enabled only for Linux users and on processors with AVX-512
instruction set. It provides an average speed up of 32x and 14x for
single and double precision functions respectively.

(gh-19478)

OpenBLAS v0.3.18

Update the OpenBLAS used in testing and in wheels to v0.3.18

(gh-20058)

Checksums

MD5
66757b963ad5835038b9a2a9df852c84  numpy-1.22.0-cp310-cp310-macosx_10_9_universal2.whl
86b7f3a94c09dbd6869614c4d7f9ba5e  numpy-1.22.0-cp310-cp310-macosx_10_9_x86_64.whl
5184db17d8e5e6ecdc53e2f0a6964c35  numpy-1.22.0-cp310-cp310-macosx_11_0_arm64.whl
6643e9a076cce736cfbe15face4db9db  numpy-1.22.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6efef45bf63594703c094b2ad729e648  numpy-1.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7a1a21bb0958a3eb920deeef9e745935  numpy-1.22.0-cp310-cp310-win_amd64.whl
45241fb5f31ea46e2b6f1321a63c8e1c  numpy-1.22.0-cp38-cp38-macosx_10_9_universal2.whl
472f24a5d35116634fcc57e9bda899bc  numpy-1.22.0-cp38-cp38-macosx_10_9_x86_64.whl
6c15cf7847b20101ae281ade6121b79e  numpy-1.22.0-cp38-cp38-macosx_11_0_arm64.whl
313f0fd99a899a7465511c1418e1031f  numpy-1.22.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9ae6ecde0cbeadd2a9d7b8ae54285863  numpy-1.22.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0f31a7b9e128b0cdafecf98cf1301fc0  numpy-1.22.0-cp38-cp38-win32.whl
f4b45579cf532ea632b890b1df387081  numpy-1.22.0-cp38-cp38-win_amd64.whl
2cb27112b11c16f700e6019f5fd36408  numpy-1.22.0-cp39-cp39-macosx_10_9_universal2.whl
4554a5797a4cb787b5169a8f5482fb95  numpy-1.22.0-cp39-cp39-macosx_10_9_x86_64.whl
3780decd94837da6f0816f2feaace9c2  numpy-1.22.0-cp39-cp39-macosx_11_0_arm64.whl
6e519dd5205510dfebcadc6f7fdf9738  numpy-1.22.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
89d455bf290f459a70c57620f02d5b69  numpy-1.22.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6425f8d7dc779a54b8074e198cea43c9  numpy-1.22.0-cp39-cp39-win32.whl
1b5c670328146975b21b54fa5ef8ec4c  numpy-1.22.0-cp39-cp39-win_amd64.whl
05d842127ca85cca12fed3a26b0f5177  numpy-1.22.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
ab751b8d4195f91ae61a402184d16d18  numpy-1.22.0.tar.gz
252de134862a27bd66705d29622edbfe  numpy-1.22.0.zip
SHA256
3d22662b4b10112c545c91a0741f2436f8ca979ab3d69d03d19322aa970f9695  numpy-1.22.0-cp310-cp310-macosx_10_9_universal2.whl
11a1f3816ea82eed4178102c56281782690ab5993251fdfd75039aad4d20385f  numpy-1.22.0-cp310-cp310-macosx_10_9_x86_64.whl
5dc65644f75a4c2970f21394ad8bea1a844104f0fe01f278631be1c7eae27226  numpy-1.22.0-cp310-cp310-macosx_11_0_arm64.whl
42c16cec1c8cf2728f1d539bd55aaa9d6bb48a7de2f41eb944697293ef65a559  numpy-1.22.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a97e82c39d9856fe7d4f9b86d8a1e66eff99cf3a8b7ba48202f659703d27c46f  numpy-1.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e41e8951749c4b5c9a2dc5fdbc1a4eec6ab2a140fdae9b460b0f557eed870f4d  numpy-1.22.0-cp310-cp310-win_amd64.whl
bece0a4a49e60e472a6d1f70ac6cdea00f9ab80ff01132f96bd970cdd8a9e5a9  numpy-1.22.0-cp38-cp38-macosx_10_9_universal2.whl
818b9be7900e8dc23e013a92779135623476f44a0de58b40c32a15368c01d471  numpy-1.22.0-cp38-cp38-macosx_10_9_x86_64.whl
47ee7a839f5885bc0c63a74aabb91f6f40d7d7b639253768c4199b37aede7982  numpy-1.22.0-cp38-cp38-macosx_11_0_arm64.whl
a024181d7aef0004d76fb3bce2a4c9f2e67a609a9e2a6ff2571d30e9976aa383  numpy-1.22.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f71d57cc8645f14816ae249407d309be250ad8de93ef61d9709b45a0ddf4050c  numpy-1.22.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
283d9de87c0133ef98f93dfc09fad3fb382f2a15580de75c02b5bb36a5a159a5  numpy-1.22.0-cp38-cp38-win32.whl
2762331de395739c91f1abb88041f94a080cb1143aeec791b3b223976228af3f  numpy-1.22.0-cp38-cp38-win_amd64.whl
76ba7c40e80f9dc815c5e896330700fd6e20814e69da9c1267d65a4d051080f1  numpy-1.22.0-cp39-cp39-macosx_10_9_universal2.whl
0cfe07133fd00b27edee5e6385e333e9eeb010607e8a46e1cd673f05f8596595  numpy-1.22.0-cp39-cp39-macosx_10_9_x86_64.whl
6ed0d073a9c54ac40c41a9c2d53fcc3d4d4ed607670b9e7b0de1ba13b4cbfe6f  numpy-1.22.0-cp39-cp39-macosx_11_0_arm64.whl
41388e32e40b41dd56eb37fcaa7488b2b47b0adf77c66154d6b89622c110dfe9  numpy-1.22.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b55b953a1bdb465f4dc181758570d321db4ac23005f90ffd2b434cc6609a63dd  numpy-1.22.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
5a311ee4d983c487a0ab546708edbdd759393a3dc9cd30305170149fedd23c88  numpy-1.22.0-cp39-cp39-win32.whl
a97a954a8c2f046d3817c2bce16e3c7e9a9c2afffaf0400f5c16df5172a67c9c  numpy-1.22.0-cp39-cp39-win_amd64.whl
bb02929b0d6bfab4c48a79bd805bd7419114606947ec8284476167415171f55b  numpy-1.22.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f2be14ba396780a6f662b8ba1a24466c9cf18a6a386174f614668e58387a13d7  numpy-1.22.0.tar.gz
a955e4128ac36797aaffd49ab44ec74a71c11d6938df83b1285492d277db5397  numpy-1.22.0.zip

v1.21.6

Compare Source

NumPy 1.21.6 Release Notes

NumPy 1.21.6 is a very small release that achieves two things:

  • Backs out the mistaken backport of C++ code into 1.21.5.
  • Provides a 32 bit Windows wheel for Python 3.10.

The provision of the 32 bit wheel is intended to make life easier for
oldest-supported-numpy.

Checksums
MD5
5a3e5d7298056bcfbc3246597af474d4  numpy-1.21.6-cp310-cp310-macosx_10_9_universal2.whl
d981d2859842e7b62dc93e24808c7bac  numpy-1.21.6-cp310-cp310-macosx_10_9_x86_64.whl
171313893c26529404d09fadb3537ed3  numpy-1.21.6-cp310-cp310-macosx_11_0_arm64.whl
5a7a6dfdd43069f9b29d3fe6b7f3a2ce  numpy-1.21.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a9e25375a72725c5d74442eda53af405  numpy-1.21.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6f9a782477380b2cdb7606f6f7634c00  numpy-1.21.6-cp310-cp310-win32.whl
32a73a348864700a3fa510d2fc4350b7  numpy-1.21.6-cp310-cp310-win_amd64.whl
0db8941ebeb0a02cd839d9cd3c5c20bb  numpy-1.21.6-cp37-cp37m-macosx_10_9_x86_64.whl
67882155be9592850861f4ad8ba36623  numpy-1.21.6-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
c70e30e1ff9ab49f898c19e7a6492ae6  numpy-1.21.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
e32dbd291032c7554a742f1bb9b2f7a3  numpy-1.21.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
689bf804c2cd16cb241fd943e3833ffd  numpy-1.21.6-cp37-cp37m-win32.whl
0062a7b0231a07cb5b9f3d7c495e6fe4  numpy-1.21.6-cp37-cp37m-win_amd64.whl
0d08809980ab497659e7aa0df9ce120e  numpy-1.21.6-cp38-cp38-macosx_10_9_universal2.whl
3c67d14ea2009069844b27bfbf74304d  numpy-1.21.6-cp38-cp38-macosx_10_9_x86_64.whl
5f0e773745cb817313232ac1bf4c7eee  numpy-1.21.6-cp38-cp38-macosx_11_0_arm64.whl
fa8011e065f1964d3eb870bb3926fc99  numpy-1.21.6-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
486cf9d4daab59aad253aa5b84a5aa83  numpy-1.21.6-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
88509abab303c076dfb26f00e455180d  numpy-1.21.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f7234e2ef837f5f6ddbde8db246fd05b  numpy-1.21.6-cp38-cp38-win32.whl
e1063e01fb44ea7a49adea0c33548217  numpy-1.21.6-cp38-cp38-win_amd64.whl
61c4caad729e3e0e688accbc1424ed45  numpy-1.21.6-cp39-cp39-macosx_10_9_universal2.whl
67488d8ccaeff798f2e314aae7c4c3d6  numpy-1.21.6-cp39-cp39-macosx_10_9_x86_64.whl
128c3713b5d1de45a0f522562bac5263  numpy-1.21.6-cp39-cp39-macosx_11_0_arm64.whl
50e79cd0610b4ed726b3bf08c3716dab  numpy-1.21.6-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
bd0c9e3c0e488faac61daf3227fb95af  numpy-1.21.6-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
aa5e9baf1dec16b15e481c23f8a23214  numpy-1.21.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a2405b0e5d3f775ad30177296a997092  numpy-1.21.6-cp39-cp39-win32.whl
f0d20eda8c78f957ea70c5527954303e  numpy-1.21.6-cp39-cp39-win_amd64.whl
9682abbcc38cccb7f56e48aacca7de23  numpy-1.21.6-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
6aa3c2e8ea2886bf593bd8e0a1425c64  numpy-1.21.6.tar.gz
04aea95dcb1d256d13a45df42173aa1e  numpy-1.21.6.zip
SHA256
8737609c3bbdd48e380d463134a35ffad3b22dc56295eff6f79fd85bd0eeeb25  numpy-1.21.6-cp310-cp310-macosx_10_9_universal2.whl
fdffbfb6832cd0b300995a2b08b8f6fa9f6e856d562800fea9182316d99c4e8e  numpy-1.21.6-cp310-cp310-macosx_10_9_x86_64.whl
3820724272f9913b597ccd13a467cc492a0da6b05df26ea09e78b171a0bb9da6  numpy-1.21.6-cp310-cp310-macosx_11_0_arm64.whl
f17e562de9edf691a42ddb1eb4a5541c20dd3f9e65b09ded2beb0799c0cf29bb  numpy-1.21.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5f30427731561ce75d7048ac254dbe47a2ba576229250fb60f0fb74db96501a1  numpy-1.21.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d4bf4d43077db55589ffc9009c0ba0a94fa4908b9586d6ccce2e0b164c86303c  numpy-1.21.6-cp310-cp310-win32.whl
d136337ae3cc69aa5e447e78d8e1514be8c3ec9b54264e680cf0b4bd9011574f  numpy-1.21.6-cp310-cp310-win_amd64.whl
6aaf96c7f8cebc220cdfc03f1d5a31952f027dda050e5a703a0d1c396075e3e7  numpy-1.21.6-cp37-cp37m-macosx_10_9_x86_64.whl
67c261d6c0a9981820c3a149d255a76918278a6b03b6a036800359aba1256d46  numpy-1.21.6-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
a6be4cb0ef3b8c9250c19cc122267263093eee7edd4e3fa75395dfda8c17a8e2  numpy-1.21.6-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
7c4068a8c44014b2d55f3c3f574c376b2494ca9cc73d2f1bd692382b6dffe3db  numpy-1.21.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7c7e5fa88d9ff656e067876e4736379cc962d185d5cd808014a8a928d529ef4e  numpy-1.21.6-cp37-cp37m-win32.whl
bcb238c9c96c00d3085b264e5c1a1207672577b93fa666c3b14a45240b14123a  numpy-1.21.6-cp37-cp37m-win_amd64.whl
82691fda7c3f77c90e62da69ae60b5ac08e87e775b09813559f8901a88266552  numpy-1.21.6-cp38-cp38-macosx_10_9_universal2.whl
643843bcc1c50526b3a71cd2ee561cf0d8773f062c8cbaf9ffac9fdf573f83ab  numpy-1.21.6-cp38-cp38-macosx_10_9_x86_64.whl
357768c2e4451ac241465157a3e929b265dfac85d9214074985b1786244f2ef3  numpy-1.21.6-cp38-cp38-macosx_11_0_arm64.whl
9f411b2c3f3d76bba0865b35a425157c5dcf54937f82bbeb3d3c180789dd66a6  numpy-1.21.6-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
4aa48afdce4660b0076a00d80afa54e8a97cd49f457d68a4342d188a09451c1a  numpy-1.21.6-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
d6a96eef20f639e6a97d23e57dd0c1b1069a7b4fd7027482a4c5c451cd7732f4  numpy-1.21.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5c3c8def4230e1b959671eb959083661b4a0d2e9af93ee339c7dada6759a9470  numpy-1.21.6-cp38-cp38-win32.whl
bf2ec4b75d0e9356edea834d1de42b31fe11f726a81dfb2c2112bc1eaa508fcf  numpy-1.21.6-cp38-cp38-win_amd64.whl
4391bd07606be175aafd267ef9bea87cf1b8210c787666ce82073b05f202add1  numpy-1.21.6-cp39-cp39-macosx_10_9_universal2.whl
67f21981ba2f9d7ba9ade60c9e8cbaa8cf8e9ae51673934480e45cf55e953673  numpy-1.21.6-cp39-cp39-macosx_10_9_x86_64.whl
ee5ec40fdd06d62fe5d4084bef4fd50fd4bb6bfd2bf519365f569dc470163ab0  numpy-1.21.6-cp39-cp39-macosx_11_0_arm64.whl
1dbe1c91269f880e364526649a52eff93ac30035507ae980d2fed33aaee633ac  numpy-1.21.6-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
d9caa9d5e682102453d96a0ee10c7241b72859b01a941a397fd965f23b3e016b  numpy-1.21.6-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
58459d3bad03343ac4b1b42ed14d571b8743dc80ccbf27444f266729df1d6f5b  numpy-1.21.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7f5ae4f304257569ef3b948810816bc87c9146e8c446053539947eedeaa32786  numpy-1.21.6-cp39-cp39-win32.whl
e31f0bb5928b793169b87e3d1e070f2342b22d5245c755e2b81caa29756246c3  numpy-1.21.6-cp39-cp39-win_amd64.whl
dd1c8f6bd65d07d3810b90d02eba7997e32abbdf1277a481d698969e921a3be0  numpy-1.21.6-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
d4efc6491a1cdc00f9eca9bf2c1aa13671776f6941c7321ddf75b45c862f0c2c  numpy-1.21.6.tar.gz
ecb55251139706669fdec2ff073c98ef8e9a84473e51e716211b41aa0f18e656  numpy-1.21.6.zip

v1.21.5

Compare Source

NumPy 1.21.5 Release Notes

NumPy 1.21.5 is a maintenance release that fixes a few bugs discovered
after the 1.21.4 release and does some maintenance to extend the 1.21.x
lifetime. The Python versions supported in this release are 3.7-3.10. If
you want to compile your own version using gcc-11, you will need to use
gcc-11.2+ to avoid problems.

Contributors

A total of 7 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Bas van Beek
  • Charles Harris
  • Matti Picus
  • Rohit Goswami
  • Ross Barnowski
  • Sayed Adel
  • Sebastian Berg

Pull requests merged

A total of 11 pull requests were merged for this release.

  • #​20357: MAINT: Do not forward __(deep)copy__ calls of _GenericAlias...
  • #​20462: BUG: Fix float16 einsum fastpaths using wrong tempvar
  • #​20463: BUG, DIST: Print os error message when the executable not exist
  • #​20464: BLD: Verify the ability to compile C++ sources before initiating...
  • #​20465: BUG: Force npymath to respect npy_longdouble
  • #​20466: BUG: Fix failure to create aligned, empty structured dtype
  • #​20467: ENH: provide a convenience function to replace npy_load_module
  • #​20495: MAINT: update wheel to version that supports python3.10
  • #​20497: BUG: Clear errors correctly in F2PY conversions
  • #​20613: DEV: add a warningfilter to fix pytest workflow.
  • #​20618: MAINT: Help boost::python libraries at least not crash

Checksums

MD5
e00a3c2e1461dd2920ab4af6b753d3da  numpy-1.21.5-cp310-cp310-macosx_10_9_universal2.whl
50e0526fa29110fb6033fa8285fba4e1  numpy-1.21.5-cp310-cp310-macosx_10_9_x86_64.whl
bdbb19e7656d66250aa67bd1c7924764  numpy-1.21.5-cp310-cp310-macosx_11_0_arm64.whl
c5c982a07797c8963b8fec44aae6db09  numpy-1.21.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8b27b622f58caeeb7f14472651d655e3  numpy-1.21.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e545f6f85f950f57606efcaeeac2e50a  numpy-1.21.5-cp310-cp310-win_amd64.whl
5c36eefdcb039c0d4db8882fddbeb695  numpy-1.21.5-cp37-cp37m-macosx_10_9_x86_64.whl
b5d080e0fd8b658419b3636f1cf5dc3a  numpy-1.21.5-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
ec1a9a1333a2bf61897f105ecd9f212a  numpy-1.21.5-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
d5ab050300748f20cdc9c6e17ba8ffd4  numpy-1.21.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b7498a1d0ea7273ef1af56d58e02a550  numpy-1.21.5-cp37-cp37m-win32.whl
f55c7ecfd35769fb3f6a408c0c123372  numpy-1.21.5-cp37-cp37m-win_amd64.whl
843e3431ba4b56d3fc36b7c4cb6fc10c  numpy-1.21.5-cp38-cp38-macosx_10_9_universal2.whl
4721e71bdc5697d310cd3a6b6cd60741  numpy-1.21.5-cp38-cp38-macosx_10_9_x86_64.whl
2169fb8ed40046e1e33d187fc85b91bb  numpy-1.21.5-cp38-cp38-macosx_11_0_arm64.whl
52de43977749109509ee708a142a7d97  numpy-1.21.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
703c0f54c5ede8cc0c648ef66cafac47  numpy-1.21.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
50432f9cf1d5b2278ceb7a96890353ed  numpy-1.21.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0c4c5336136e045d02c60ba8115eb6a2  numpy-1.21.5-cp38-cp38-win32.whl
c2e0744164f8255be70725ef42bc3f5b  numpy-1.21.5-cp38-cp38-win_amd64.whl
b16dd7103117d051cb6c3b6c4434f7d2  numpy-1.21.5-cp39-cp39-macosx_10_9_universal2.whl
220dd07273aeb0b2ca8f0e4f543e43c3  numpy-1.21.5-cp39-cp39-macosx_10_9_x86_64.whl
1dd09ad75eff93b274f650871e0b9287  numpy-1.21.5-cp39-cp39-macosx_11_0_arm64.whl
6801263f51d3b13420b59ff84c716869  numpy-1.21.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
035bde3955ae2f62ada65084d71a7421  numpy-1.21.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
09f202576cbd0ed6121cff10cdea831a  numpy-1.21.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c6a44c90c2d5124fea6cedbbf575e252  numpy-1.21.5-cp39-cp39-win32.whl
bbc11e31406a9fc48c18a41259bc8866  numpy-1.21.5-cp39-cp39-win_amd64.whl
5be2b6f6cf6fb3a3d98231e891260624  numpy-1.21.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
8bc9ff24bac9bf4268372cefea8f0b6b  numpy-1.21.5.tar.gz
88b5438ded7992fa2e6a810d43cd32a1  numpy-1.21.5.zip
SHA256
301e408a052fdcda5cdcf03021ebafc3c6ea093021bf9d1aa47c54d48bdad166  numpy-1.21.5-cp310-cp310-macosx_10_9_universal2.whl
a7e8f6216f180f3fd4efb73de5d1eaefb5f5a1ee5b645c67333033e39440e63a  numpy-1.21.5-cp310-cp310-macosx_10_9_x86_64.whl
fc7a7d7b0ed72589fd8b8486b9b42a564f10b8762be8bd4d9df94b807af4a089  numpy-1.21.5-cp310-cp310-macosx_11_0_arm64.whl
58ca1d7c8aef6e996112d0ce873ac9dfa1eaf4a1196b4ff7ff73880a09923ba7  numpy-1.21.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dc4b2fb01f1b4ddbe2453468ea0719f4dbb1f5caa712c8b21bb3dd1480cd30d9  numpy-1.21.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cc1b30205d138d1005adb52087ff45708febbef0e420386f58664f984ef56954  numpy-1.21.5-cp310-cp310-win_amd64.whl
08de8472d9f7571f9d51b27b75e827f5296295fa78817032e84464be8bb905bc  numpy-1.21.5-cp37-cp37m-macosx_10_9_x86_64.whl
4fe6a006557b87b352c04596a6e3f12a57d6e5f401d804947bd3188e6b0e0e76  numpy-1.21.5-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
3d893b0871322eaa2f8c7072cdb552d8e2b27645b7875a70833c31e9274d4611  numpy-1.21.5-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
341dddcfe3b7b6427a28a27baa59af5ad51baa59bfec3264f1ab287aa3b30b13  numpy-1.21.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ca9c23848292c6fe0a19d212790e62f398fd9609aaa838859be8459bfbe558aa  numpy-1.21.5-cp37-cp37m-win32.whl
025b497014bc33fc23897859350f284323f32a2fff7654697f5a5fc2a19e9939  numpy-1.21.5-cp37-cp37m-win_amd64.whl
3a5098df115340fb17fc93867317a947e1dcd978c3888c5ddb118366095851f8  numpy-1.21.5-cp38-cp38-macosx_10_9_universal2.whl
311283acf880cfcc20369201bd75da907909afc4666966c7895cbed6f9d2c640  numpy-1.21.5-cp38-cp38-macosx_10_9_x86_64.whl
b545ebadaa2b878c8630e5bcdb97fc4096e779f335fc0f943547c1c91540c815  numpy-1.21.5-cp38-cp38-macosx_11_0_arm64.whl
c5562bcc1a9b61960fc8950ade44d00e3de28f891af0acc96307c73613d18f6e  numpy-1.21.5-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
eed2afaa97ec33b4411995be12f8bdb95c87984eaa28d76cf628970c8a2d689a  numpy-1.21.5-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
61bada43d494515d5b122f4532af226fdb5ee08fe5b5918b111279843dc6836a  numpy-1.21.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7b9d6b14fc9a4864b08d1ba57d732b248f0e482c7b2ff55c313137e3ed4d8449  numpy-1.21.5-cp38-cp38-win32.whl
dbce7adeb66b895c6aaa1fad796aaefc299ced597f6fbd9ceddb0dd735245354  numpy-1.21.5-cp38-cp38-win_amd64.whl
507c05c7a37b3683eb08a3ff993bd1ee1e6c752f77c2f275260533b265ecdb6c  numpy-1.21.5-cp39-cp39-macosx_10_9_universal2.whl
00c9fa73a6989895b8815d98300a20ac993c49ac36c8277e8ffeaa3631c0dbbb  numpy-1.21.5-cp39-cp39-macosx_10_9_x86_64.whl
69a5a8d71c308d7ef33ef72371c2388a90e3495dbb7993430e674006f94797d5  numpy-1.21.5-cp39-cp39-macosx_11_0_arm64.whl
2d8adfca843bc46ac199a4645233f13abf2011a0b2f4affc5c37cd552626f27b  numpy-1.21.5-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
c293d3c0321996cd8ffe84215ffe5d269fd9d1d12c6f4ffe2b597a7c30d3e593  numpy-1.21.5-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
3c978544be9e04ed12016dd295a74283773149b48f507d69b36f91aa90a643e5  numpy-1.21.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2a9add27d7fc0fdb572abc3b2486eb3b1395da71e0254c5552b2aad2a18b5441  numpy-1.21.5-cp39-cp39-win32.whl
1964db2d4a00348b7a60ee9d013c8cb0c566644a589eaa80995126eac3b99ced  numpy-1.21.5-cp39-cp39-win_amd64.whl
a7c4b701ca418cd39e28ec3b496e6388fe06de83f5f0cb74794fa31cfa384c02  numpy-1.21.5-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
1a7ee0ffb35dc7489aebe5185a483f4c43b0d2cf784c3c9940f975a7dde56506  numpy-1.21.5.tar.gz
6a5928bc6241264dce5ed509e66f33676fc97f464e7a919edc672fb5532221ee  numpy-1.21.5.zip

v1.21.4

Compare Source

NumPy 1.21.4 Release Notes

The NumPy 1.21.4 is a maintenance release that fixes a few bugs
discovered after 1.21.3. The most important fix here is a fix for the
NumPy header files to make them work for both x86_64 and M1 hardware
when included in the Mac universal2 wheels. Previously, the header files
only worked for M1 and this caused problems for folks building x86_64
extensions. This problem was not seen before Python 3.10 because there
were thin wheels for x86_64 that had precedence. This release also
provides thin x86_64 Mac wheels for Python 3.10.

The Python versions supported in this release are 3.7-3.10. If you want
to compile your own version using gcc-11, you will need to use gcc-11.2+
to avoid problems.

Contributors

A total of 7 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Bas van Beek
  • Charles Harris
  • Isuru Fernando
  • Matthew Brett
  • Sayed Adel
  • Sebastian Berg
  • 傅立业(Chris Fu) +

Pull requests merged

A total of 9 pull requests were merged for this release.

  • #​20278: BUG: Fix shadowed reference of dtype in type stub
  • #​20293: BUG: Fix headers for universal2 builds
  • #​20294: BUG: VOID_nonzero could sometimes mutate alignment flag
  • #​20295: BUG: Do not use nonzero fastpath on unaligned arrays
  • #​20296: BUG: Distutils patch to allow for 2 as a minor version (!)
  • #​20297: BUG, SIMD: Fix 64-bit/8-bit integer division by a scalar
  • #​20298: BUG, SIMD: Workaround broadcasting SIMD 64-bit integers on MSVC...
  • #​20300: REL: Prepare for the NumPy 1.21.4 release.
  • #​20302: TST: Fix a Arrayterator typing test failure

Checksums

MD5
95486a3ed027c926fb3fc279db6d843e  numpy-1.21.4-cp310-cp310-macosx_10_9_universal2.whl
9f57fad74762f7665669af33583a3dc9  numpy-1.21.4-cp310-cp310-macosx_10_9_x86_64.whl
719a9053aef01a067ce44ede2281eef9  numpy-1.21.4-cp310-cp310-macosx_11_0_arm64.whl
72035d101774fd03beff391927f59aa9  numpy-1.21.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5813e7a378a6e3f5c269c23f61eff4d9  numpy-1.21.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b88a1bc4f08dfb154d5a07d15e387af6  numpy-1.21.4-cp310-cp310-win_amd64.whl
f0cc946d2f4ab4df7cc7e0cc8cfd429e  numpy-1.21.4-cp37-cp37m-macosx_10_9_x86_64.whl
1234643306ce481f0e5f801ddf3f1099  numpy-1.21.4-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
b9208ce1695ba61ab2932c7ce7285d1d  numpy-1.21.4-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
9804fe2011618bf2d7b8d92f6860b2e3  numpy-1.21.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2ad3a06f974acd61326fd66c098df5bc  numpy-1.21.4-cp37-cp37m-win32.whl
172301389f1532b2d9130362580e1e22  numpy-1.21.4-cp37-cp37m-win_amd64.whl
a037bf88979ae0d4699a0cdce92bbab3  numpy-1.21.4-cp38-cp38-macosx_10_9_universal2.whl
ba94609688f575cc8dce84f1512db116  numpy-1.21.4-cp38-cp38-macosx_10_9_x86_64.whl
c78edc0ae8c9a5d8d0f9e3eb6dabd0b3  numpy-1.21.4-cp38-cp38-macosx_11_0_arm64.whl
d683b6f6af46806391579d528a040451  numpy-1.21.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
df631f776716aeb3fd705f3659599b9e  numpy-1.21.4-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
b1cbca49d24c7ba43d377feb425afdce  numpy-1.21.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8b5c214bc0f060dbb0287c15dde4673d  numpy-1.21.4-cp38-cp38-win32.whl
2307cf9f3c02f6cdad448a681c272974  numpy-1.21.4-cp38-cp38-win_amd64.whl
fc02b5a068e29b2dd2de19c7ddd69926  numpy-1.21.4-cp39-cp39-macosx_10_9_universal2.whl
f16068540001de8a3d8f096830c97ea2  numpy-1.21.4-cp39-cp39-macosx_10_9_x86_64.whl
80562c39cfbdf1af9bb43b2ea5e45b6d  numpy-1.21.4-cp39-cp39-macosx_11_0_arm64.whl
6c103bec3085e5a6ea92cf7f6e4189ab  numpy-1.21.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
9d715ba5f7596a39eb631f2dae85d203  numpy-1.21.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
8b8cf8c7b093419ff75ed1dd2eaa18ae  numpy-1.21.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
404200b858b7addd03f6cdd5a484d30a  numpy-1.21.4-cp39-cp39-win32.whl
cdab6a1bf1b86021526d08a60219a6ad  numpy-1.21.4-cp39-cp39-win_amd64.whl
70ca6b591e844fdcb8c22175f094d3b4  numpy-1.21.4-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
06019c1116b3e2791bd507f898257e7f  numpy-1.21.4.tar.gz
b3c4477a027d5b6fba5e1065064fd076  numpy-1.21.4.zip
SHA256
8890b3360f345e8360133bc078d2dacc2843b6ee6059b568781b15b97acbe39f  numpy-1.21.4-cp310-cp310-macosx_10_9_universal2.whl
69077388c5a4b997442b843dbdc3a85b420fb693ec8e33020bb24d647c164fa5  numpy-1.21.4-cp310-cp310-macosx_10_9_x86_64.whl
e89717274b41ebd568cd7943fc9418eeb49b1785b66031bc8a7f6300463c5898  numpy-1.21.4-cp310-cp310-macosx_11_0_arm64.whl
0b78ecfa070460104934e2caf51694ccd00f37d5e5dbe76f021b1b0b0d221823  numpy-1.21.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
615d4e328af7204c13ae3d4df7615a13ff60a49cb0d9106fde07f541207883ca  numpy-1.21.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1403b4e2181fc72664737d848b60e65150f272fe5a1c1cbc16145ed43884065a  numpy-1.21.4-cp310-cp310-win_amd64.whl
74b85a17528ca60cf98381a5e779fc0264b4a88b46025e6bcbe9621f46bb3e63  numpy-1.21.4-cp37-cp37m-macosx_10_9_x86_64.whl
92aafa03da8658609f59f18722b88f0a73a249101169e28415b4fa148caf7e41  numpy-1.21.4-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
5d95668e727c75b3f5088ec7700e260f90ec83f488e4c0aaccb941148b2cd377  numpy-1.21.4-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
f5162ec777ba7138906c9c274353ece5603646c6965570d82905546579573f73  numpy-1.21.4-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
81225e58ef5fce7f1d80399575576fc5febec79a8a2742e8ef86d7b03beef49f  numpy-1.21.4-cp37-cp37m-win32.whl
32fe5b12061f6446adcbb32cf4060a14741f9c21e15aaee59a207b6ce6423469  numpy-1.21.4-cp37-cp37m-win_amd64.whl
c449eb870616a7b62e097982c622d2577b3dbc800aaf8689254ec6e0197cbf1e  numpy-1.21.4-cp38-cp38-macosx_10_9_universal2.whl
2e4ed57f45f0aa38beca2a03b6532e70e548faf2debbeb3291cfc9b315d9be8f  numpy-1.21.4-cp38-cp38-macosx_10_9_x86_64.whl
1247ef28387b7bb7f21caf2dbe4767f4f4175df44d30604d42ad9bd701ebb31f  numpy-1.21.4-cp38-cp38-macosx_11_0_arm64.whl
34f3456f530ae8b44231c63082c8899fe9c983fd9b108c997c4b1c8c2d435333  numpy-1.21.4-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
4c9c23158b87ed0e70d9a50c67e5c0b3f75bcf2581a8e34668d4e9d7474d76c6  numpy-1.21.4-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
e4799be6a2d7d3c33699a6f77201836ac975b2e1b98c2a07f66a38f499cb50ce  numpy-1.21.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
bc988afcea53e6156546e5b2885b7efab089570783d9d82caf1cfd323b0bb3dd  numpy-1.21.4-cp38-cp38-win32.whl
170b2a0805c6891ca78c1d96ee72e4c3ed1ae0a992c75444b6ab20ff038ba2cd  numpy-1.21.4-cp38-cp38-win_amd64.whl
fde96af889262e85aa033f8ee1d3241e32bf36228318a61f1ace579df4e8170d  numpy-1.21.4-cp39-cp39-macosx_10_9_universal2.whl
c885bfc07f77e8fee3dc879152ba993732601f1f11de248d4f357f0ffea6a6d4  numpy-1.21.4-cp39-cp39-macosx_10_9_x86_64.whl
9e6f5f50d1eff2f2f752b3089a118aee1ea0da63d56c44f3865681009b0af162  numpy-1.21.4-cp39-cp39-macosx_11_0_arm64.whl
ad010846cdffe7ec27e3f933397f8a8d6c801a48634f419e3d075db27acf5880  numpy-1.21.4-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
c74c699b122918a6c4611285cc2cad4a3aafdb135c22a16ec483340ef97d573c  numpy-1.21.4-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
9864424631775b0c052f3bd98bc2712d131b3e2cd95d1c0c68b91709170890b0  numpy-1.21.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
b1e2312f5b8843a3e4e8224b2b48fe16119617b8fc0a54df8f50098721b5bed2  numpy-1.21.4-cp39-cp39-win32.whl
e3c3e990274444031482a31280bf48674441e0a5b55ddb168f3a6db3e0c38ec8  numpy-1.21.4-cp39-cp39-win_amd64.whl
a3deb31bc84f2b42584b8c4001c85d1934dbfb4030827110bc36bfd11509b7bf  numpy-1.21.4-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
5d412381aa489b8be82ac5c6a9e99c3eb3f754245ad3f90ab5c339d92f25fb47  numpy-1.21.4.tar.gz
e6c76a87633aa3fa16614b61ccedfae45b91df2767cf097aa9c933932a7ed1e0  numpy-1.21.4.zip

v1.21.3

Compare Source

NumPy 1.21.3 Release Notes

The NumPy 1.21.3 is a maintenance release the fixes a few bugs
discovered after 1.21.2. It also provides 64 bit Python 3.10.0 wheels.
Note a few oddities about Python 3.10:

  • There are no 32 bit wheels for Windows, Mac, or Linux.
  • The Mac Intel builds are only available in universal2 wheels.

The Python versions supported in this release are 3.7-3.10. If you want
to compile your own version using gcc-11 you will need to use gcc-11.2+
to avoid problems.

Contributors

A total of 7 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Aaron Meurer
  • Bas van Beek
  • Charles Harris
  • Developer-Ecosystem-Engineering +
  • Kevin Sheppard
  • Sebastian Berg
  • Warren Weckesser

Pull requests merged

A total of 8 pull requests were merged for this release.

  • #​19745: ENH: Add dtype-support to 3 `generic/ndarray methods
  • #​19955: BUG: Resolve Divide by Zero on Apple silicon + test failures...
  • #​19958: MAINT: Mark type-check-only ufunc subclasses as ufunc aliases...
  • #​19994: BUG: np.tan(np.inf) test failure
  • #​20080: BUG: Correct incorrect advance in PCG with emulated int128
  • #​20081: BUG: Fix NaT handling in the PyArray_CompareFunc for datetime...
  • #​20082: DOC: Ensure that we add documentation also as to the dict for...
  • #​20106: BUG: core: result_type(0, np.timedelta64(4)) would seg. fault.

Checksums

MD5
9acea9630856659ba48fdb582ecc37b4  numpy-1.21.3-cp310-cp310-macosx_10_9_universal2.whl
a70f80a4e74a3153a8307c4f0ea8d13d  numpy-1.21.3-cp310-cp310-macosx_11_0_arm64.whl
13cfe83efd261ea1c3d1eb02c1d3af83  numpy-1.21.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8576bfd867834182269f72abbaa2e81e  numpy-1.21.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8ac48f503f1e22c0c2b5d056772aca27  numpy-1.21.3-cp310-cp310-win_amd64.whl
cbe0d0d7623de3c2c7593f673d1a880a  numpy-1.21.3-cp37-cp37m-macosx_10_9_x86_64.whl
0967b18baba13e511c7eb48902a62b39  numpy-1.21.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
da54c9566f3e3f8c7d60efebfdf7e1ae  numpy-1.21.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
0aa000f3c10cf74bf47770577384b5c8  numpy-1.21.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5683501bf91be25c53c52e3b083098c3  numpy-1.21.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
89e15d979533f8a314e0ab0648ee7153  numpy-1.21.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
a093fea475b5ed18bd21b3c79e68e388  numpy-1.21.3-cp37-cp37m-win32.whl
f906001213ed0902b1aecfaa12224e94  numpy-1.21.3-cp37-cp37m-win_amd64.whl
88a2cd378412220d618473dd273baf04  numpy-1.21.3-cp38-cp38-macosx_10_9_universal2.whl
1bc55202f604e30f338bc2ed27b561bc  numpy-1.21.3-cp38-cp38-macosx_10_9_x86_64.whl
9555dc6de8748958434e8f2feba98494  numpy-1.21.3-cp38-cp38-macosx_11_0_arm64.whl
93ad32cc87866e9242156bdadc61e5f5  numpy-1.21.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
7cb0b7dd6aee667ecdccae1829260186  numpy-1.21.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
34e6f5f9e9534ef8772f024170c2bd2d  numpy-1.21.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
54e6abfb8f600de2ccd1649b1fca820b  numpy-1.21.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
260ba58f2dc64e779eac7318ec92f36c  numpy-1.21.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
889202c6bdaf8c1ae0803925e9e1a8f7  numpy-1.21.3-cp38-cp38-win32.whl
980303a7e6317faf9a56ba8fc80795d9  numpy-1.21.3-cp38-cp38-win_amd64.whl
44d6bd26fb910710ab4002d0028c9020  numpy-1.21.3-cp39-cp39-macosx_10_9_universal2.whl
6f5b02152bd0b08a77b79657788ce59c  numpy-1.21.3-cp39-cp39-macosx_10_9_x86_64.whl
ad05d5c412d15e7880cd65cc6cdd4aac  numpy-1.21.3-cp39-cp39-macosx_11_0_arm64.whl
5b61a91221931af4a78c3bd20925a91f  numpy-1.21.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
df7344ae04c5a54249fa1b63a256ce61  numpy-1.21.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
c653a096da47b64b42e8f1536a21f7d4  numpy-1.21.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e0d35451ba1c37f96e032bc6f75ccdf7  numpy-1.21.3-cp39-cp39-win32.whl
b2e1dc59b6fa224ce11728d94be740a6  numpy-1.21.3-cp39-cp39-win_amd64.whl
8ce925a0fcbc1062985026215d369276  numpy-1.21.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
b8e6b7165f105bde0b45cd9ae34bfe20  numpy-1.21.3.tar.gz
59d986f5ccf3edfb7d4d14949c6666ed  numpy-1.21.3.zip
SHA256
508b0b513fa1266875524ba8a9ecc27b02ad771fe1704a16314dc1a816a68737  numpy-1.21.3-cp310-cp310-macosx_10_9_universal2.whl
5dfe9d6a4c39b8b6edd7990091fea4f852888e41919d0e6722fe78dd421db0eb  numpy-1.21.3-cp310-cp310-macosx_11_0_arm64.whl
8a10968963640e75cc0193e1847616ab4c718e83b6938ae74dea44953950f6b7  numpy-1.21.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
49c6249260890e05b8111ebfc391ed58b3cb4b33e63197b2ec7f776e45330721  numpy-1.21.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f8f4625536926a155b80ad2bbff44f8cc59e9f2ad14cdda7acf4c135b4dc8ff2  numpy-1.21.3-cp310-cp310-win_amd64.whl
e54af82d68ef8255535a6cdb353f55d6b8cf418a83e2be3569243787a4f4866f  numpy-1.21.3-cp37-cp37m-macosx_10_9_x86_64.whl
f41b018f126aac18583956c54544db437f25c7ee4794bcb23eb38bef8e5e192a  numpy-1.21.3-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.whl
50cd26b0cf6664cb3b3dd161ba0a09c9c1343db064e7c69f9f8b551f5104d654  numpy-1.21.3-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
4cc9b512e9fb590797474f58b7f6d1f1b654b3a94f4fa8558b48ca8b3cfc97cf  numpy-1.21.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
88a5d6b268e9ad18f3533e184744acdaa2e913b13148160b1152300c949bbb5f  numpy-1.21.3-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
3c09418a14471c7ae69ba682e2428cae5b4420a766659605566c0fa6987f6b7e  numpy-1.21.3-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
90bec6a86b348b4559b6482e2b684db4a9a7eed1fa054b86115a48d58fbbf62a  numpy-1.21.3-cp37-cp37m-win32.whl
043e83bfc274649c82a6f09836943e4a4aebe5e33656271c7dbf9621dd58b8ec  numpy-1.21.3-cp37-cp37m-win_amd64.whl
75621882d2230ab77fb6a03d4cbccd2038511491076e7964ef87306623aa5272  numpy-1.21.3-cp38-cp38-macosx_10_9_universal2.whl
188031f833bbb623637e66006cf75e933e00e7231f67e2b45cf8189612bb5dc3  numpy-1.21.3-cp38-cp38-macosx_10_9_x86_64.whl
160ccc1bed3a8371bf0d760971f09bfe80a3e18646620e9ded0ad159d9749baa  numpy-1.21.3-cp38-cp38-macosx_11_0_arm64.whl
29fb3dcd0468b7715f8ce2c0c2d9bbbaf5ae686334951343a41bd8d155c6ea27  numpy-1.21.3-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.whl
32437f0b275c1d09d9c3add782516413e98cd7c09e6baf4715cbce781fc29912  numpy-1.21.3-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
e606e6316911471c8d9b4618e082635cfe98876007556e89ce03d52ff5e8fcf0  numpy-1.21.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a99a6b067e5190ac6d12005a4d85aa6227c5606fa93211f86b1dafb16233e57d  numpy-1.21.3-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
dde972a1e11bb7b702ed0e447953e7617723760f420decb97305e66fb4afc54f  numpy-1.21.3-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
fe52dbe47d9deb69b05084abd4b0df7abb39a3c51957c09f635520abd49b29dd  numpy-1.21.3-cp38-cp38-win32.whl
75eb7cadc8da49302f5b659d40ba4f6d94d5045fbd9569c9d058e77b0514c9e4  numpy-1.21.3-cp38-cp38-win_amd64.whl
2a6ee9620061b2a722749b391c0d80a0e2ae97290f1b32e28d5a362e21941ee4  numpy-1.21.3-cp39-cp39-macosx_10_9_universal2.whl
5c4193f70f8069550a1788bd0cd3268ab7d3a2b70583dfe3b2e7f421e9aace06  numpy-1.21.3-cp39-cp39-macosx_10_9_x86_64.whl
28f15209fb535dd4c504a7762d3bc440779b0e37d50ed810ced209e5cea60d96  numpy-1.21.3-cp39-cp39-macosx_11_0_arm64.whl
c6c2d535a7beb1f8790aaa98fd089ceab2e3dd7ca48aca0af7dc60e6ef93ffe1  numpy-1.21.3-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.whl
bffa2eee3b87376cc6b31eee36d05349571c236d1de1175b804b348dc0941e3f  numpy-1.21.3-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
cc14e7519fab2a4ed87d31f99c31a3796e4e1fe63a86ebdd1c5a1ea78ebd5896  numpy-1.21.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dd0482f3fc547f1b1b5d6a8b8e08f63fdc250c58ce688dedd8851e6e26cff0f3  numpy-1.21.3-cp39-cp39-win32.whl
300321e3985c968e3ae7fbda187237b225f3ffe6528395a5b7a5407f73cf093e  numpy-1.21.3-cp39-cp39-win_amd64.whl
98339aa9911853f131de11010f6dd94c8cec254d3d1f7261528c3b3e3219f139  numpy-1.21.3-pp37-pypy37_pp73-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
d0bba24083c01ae43457514d875f10d9ce4c1125d55b1e2573277b2410f2d068  numpy-1.21.3.tar.gz
63571bb7897a584ca3249c86dd01c10bcb5fe4296e3568b2e9c1a55356b6410e  numpy-1.21.3.zip

v1.21.2

Compare Source

NumPy 1.21.2 Release Notes

The NumPy 1.21.2 is maintenance release that fixes bugs discovered after
1.21.1. It also provides 64 bit manylinux Python 3.10.0rc1 wheels for
downstream testing. Note that Python 3.10 is not yet final. There is
also preliminary support for Windows on ARM64 builds, but there is no
OpenBLAS for that platform and no wheels are available.

The Python versions supported for this release are 3.7-3.9. The 1.21.x
series is compatible with Python 3.10.0rc1 and Python 3.10 will be
officially supported after it is released. The previous problems with
gcc-11.1 have been fixed by gcc-11.2, check your version if you are
using gcc-11.

Contributors

A total of 10 people contributed to this release. People with a "+" by
their names contributed a patch for the first time.

  • Bas van Beek
  • Carl Johnsen +
  • Charles Harris
  • Gwyn Ciesla +
  • Matthieu Dartiailh
  • Matti Picus
  • Niyas Sait +
  • Ralf Gommers
  • Sayed Adel
  • Sebastian Berg

Pull requests merged

A total of 18 pull requests were merged for this release.

  • #​19497: MAINT: set Python version for 1.21.x to <3.11
  • #​19533: BUG: Fix an issue wherein importing numpy.typing could raise
  • #​19646: MAINT: Update Cython version for Python 3.10.
  • #​19648: TST: Bump the python 3.10 test version from beta4 to rc1
  • #​19651: TST: avoid distutils.sysconfig in runtests.py
  • #​19652: MAINT: add missing dunder method to nditer type hints
  • #​19656: BLD, SIMD: Fix testing extra checks when -Werror isn't applicable...
  • #​19657: BUG: Remove logical object ufuncs with bool outp

Configuration

📅 Schedule: Branch creation - "" (UTC), Automerge - At any time (no schedule defined).

🚦 Automerge: Disabled by config. Please merge this manually once you are satisfied.

Rebasing: Whenever PR is behind base branch, or you tick the rebase/retry checkbox.

🔕 Ignore: Close this PR and you won't be reminded about this update again.


  • If you want to rebase/retry this PR, check this box

This PR was generated by Mend Renovate. View the repository job log.

@renovate renovate bot force-pushed the feature/renovate-pypi-numpy-vulnerability branch from 34e43db to e3a8286 Compare July 23, 2023 14:47
@renovate renovate bot force-pushed the feature/renovate-pypi-numpy-vulnerability branch from e3a8286 to 7c9121d Compare September 19, 2023 15:21
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants