Skip to content

ds301056/Trader

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

54 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Forex - Trading Bot (built using python)

**Currently depolyed at https://forex.devhorizon.io/ **

v1-Dash-Deployment

Data comes from OANDA API

Writes data to pkl's for each currency conversion then consolidates all pkl's into an excel sheet for advanced data analysis

Excell

---------------------------------------------

to Start the backend server:

1. get into python venv: F:\GitHub\Trader\Code> .\venv\Scripts\Activate

2. Collect data if needed: python main.py

3. start the server we built using python server.py

-----------------------------------------------------

to view / create the dashboard

1. navigate to: F:\GitHub\Trader\Code\forex-dash>

2. run: npm start

----------------------------------------------

check the setup.bat file

run with .\setup.bat

main

##### if data is to be changed

check the setup.bat file

run with .\setup.bat

The stocks and data are from Oanda

@ developer.oanda.com

educational account - nonprofit

Oanda api:
950e89e18324a1decd3d88f4cc43a085-5f59d5913e0f487ebe5eec4cb06b20c1

account number
101-001-27981277-001

Requirements

  • check the requirements.txt

  • generate the requirements.txt from installed packages: pip freeze > requirements.txt -install requirements.txt: pip install -r requirements.txt

We will need python for this application can use "python3 -V" to get version or "python3" to install python. 3.10 + required.

Setting up the python virtual environment:

  1. "python -m venv venv" <!--create it by typing in the terminal ->
  2. "venv/scripts/activate"
  3. "pip install pillow"
  4. "venv/scripts/deactivate"

in the project Code folder: 5. "pip install wheel" 6. "pip install pandas jupyter" 7. "pip install jupyterthemes" 8. "pip install requests" 9. "pip install plotly" 10."jt -t onedork -f roboto -cellw 95%"

11."jupyter notebook" <!--run the notebook server->

PS Pandas has changed the group by to include more than numerics, so we will use groupby(stuff...).sum(numeric_only=true)

  1. generate the pkl's for each currency with:

    api = OandaApi() instrumentCollection.LoadInstruments("./data") run_collection(instrumentCollection, api)

  2. ** Delete the ma res trades and ma res pkl before generating the spreadsheets with:

    run_ma_sim() # Run the moving average simulation

    (if not deleted the spreadsheets will be wack)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published