forked from hpcaitech/ColossalAI
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'hpcaitech:main' into main
- Loading branch information
Showing
12 changed files
with
194 additions
and
20 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
import os | ||
import random | ||
|
||
import numpy as np | ||
import pytest | ||
import torch | ||
import torch.distributed as dist | ||
from torch.multiprocessing import Manager | ||
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, LlamaForCausalLM, LlamaTokenizer | ||
|
||
import colossalai | ||
import colossalai.inference.modeling.policy as policy | ||
from colossalai.inference.config import _DEFAULT_PROMPT_TEMPLATES, InferenceConfig | ||
from colossalai.inference.core.engine import InferenceEngine | ||
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn | ||
|
||
# NOTE: To test a model with the inference engine, you need to provide the path to your | ||
# local pretrained model weights in the MODEL_MAP dictionary | ||
MODEL_MAP = { | ||
"baichuan": { | ||
"model": AutoModelForCausalLM, | ||
"tokenizer": AutoTokenizer, | ||
"policy": policy.NoPaddingBaichuanModelInferPolicy, | ||
"model_name_or_path": "baichuan-inc/Baichuan2-13B-Base", # provide the path to local model weights | ||
}, | ||
"llama": { | ||
"model": LlamaForCausalLM, | ||
"tokenizer": LlamaTokenizer, | ||
"policy": policy.NoPaddingLlamaModelInferPolicy, | ||
"model_name_or_path": "meta-llama/Llama-2-70b-hf", | ||
}, | ||
} | ||
|
||
MODELS_TO_TEST = ["llama", "baichuan"] # Specify the models to test | ||
|
||
|
||
@parameterize("model", MODELS_TO_TEST) | ||
@parameterize("prompt_template", [None, "model_specific"]) | ||
@parameterize("do_sample", [False]) | ||
@parameterize("use_cuda_kernel", [True]) | ||
@pytest.mark.largedist | ||
@rerun_if_address_is_in_use() | ||
def test_model(model, prompt_template, do_sample, use_cuda_kernel): | ||
model_path = MODEL_MAP[model]["model_name_or_path"] | ||
if not os.path.exists(model_path): | ||
pytest.skip( | ||
f"There is no local model address included for {model}, please replace this address with a valid one." | ||
) | ||
|
||
if prompt_template == "model_specific": | ||
prompt_template = model | ||
|
||
model_config = MODEL_MAP[model] | ||
|
||
kwargs1 = { | ||
"model": model, | ||
"use_engine": True, | ||
"prompt_template": prompt_template, | ||
"do_sample": do_sample, | ||
"policy": model_config["policy"](), | ||
"use_cuda_kernel": use_cuda_kernel, | ||
} | ||
|
||
kwargs2 = { | ||
"model": model, | ||
"use_engine": False, | ||
"prompt_template": prompt_template, | ||
"do_sample": do_sample, | ||
"policy": None, | ||
"use_cuda_kernel": use_cuda_kernel, | ||
} | ||
|
||
colossal_tp_1_output = run_engine(1, **kwargs1) | ||
colossal_tp_2_output = run_engine(2, **kwargs1) | ||
transformer_tp_1_output = run_engine(1, **kwargs2) | ||
|
||
for s1, s2, s3 in zip(colossal_tp_1_output, colossal_tp_2_output, transformer_tp_1_output): | ||
assert s1 == s3, f"\nColossalAI TP=1 Output: {s1}\nTransformers Output: {s3}" | ||
assert s1 == s2, f"\nColossalAI TP=1 Output: {s1}\nColossalAI TP=2 Output: {s2}" | ||
|
||
|
||
def run_engine(world_size, **kwargs): | ||
manager = Manager() | ||
result_list = manager.list([-1] * world_size) # Create a shared list | ||
spawn(run_dist, world_size, func_to_run=_run_engine, ret=result_list, **kwargs) | ||
return result_list[0] | ||
|
||
|
||
def run_dist(rank, world_size, port, func_to_run, ret=None, **kwargs): | ||
colossalai.launch(rank=rank, world_size=world_size, port=port, host="localhost") | ||
|
||
if ret: | ||
ret[rank] = func_to_run(**kwargs) | ||
else: | ||
func_to_run(**kwargs) | ||
|
||
|
||
def _run_engine(model, use_engine=False, do_sample=False, use_cuda_kernel=False, prompt_template=None, policy=None): | ||
setup_seed(20) | ||
model_config = MODEL_MAP[model] | ||
model_name_or_path = model_config["model_name_or_path"] | ||
tokenizer = model_config["tokenizer"].from_pretrained(model_name_or_path, use_fast=False, trust_remote_code=True) | ||
model = model_config["model"].from_pretrained(model_name_or_path, trust_remote_code=True).half().cuda() | ||
model = model.eval() | ||
|
||
inputs = [ | ||
"Introduce some landmarks in Paris:", | ||
] | ||
|
||
output_len = 38 | ||
|
||
if do_sample: | ||
top_p = 0.5 | ||
top_k = 50 | ||
else: | ||
top_p = None | ||
top_k = None | ||
|
||
if use_engine: | ||
inference_config = InferenceConfig( | ||
max_output_len=output_len, | ||
prompt_template=prompt_template, | ||
use_cuda_kernel=use_cuda_kernel, | ||
tp_size=dist.get_world_size(), | ||
) | ||
inference_engine = InferenceEngine(model, tokenizer, inference_config, verbose=True, model_policy=policy) | ||
assert inference_engine.generation_config.max_new_tokens == output_len | ||
inference_engine.add_request(prompts=inputs) | ||
assert inference_engine.request_handler._has_waiting() | ||
generation_config = GenerationConfig(do_sample=do_sample, top_p=top_p, top_k=top_k, max_new_tokens=output_len) | ||
outputs = inference_engine.generate(generation_config=generation_config) | ||
else: | ||
if prompt_template: | ||
# apply prompt template | ||
inputs = [_DEFAULT_PROMPT_TEMPLATES[prompt_template].format(input_text=input_text) for input_text in inputs] | ||
tokenizer.pad_token = tokenizer.eos_token | ||
tokenizer.pad_token_id = tokenizer.eos_token_id | ||
inputs = tokenizer.batch_encode_plus(inputs, padding=True, return_tensors="pt")["input_ids"] | ||
inputs = inputs.cuda() | ||
generation_config = GenerationConfig( | ||
do_sample=do_sample, | ||
top_p=top_p, | ||
top_k=top_k, | ||
pad_token_id=tokenizer.pad_token_id, | ||
max_new_tokens=output_len, | ||
) | ||
outputs = model.generate(inputs, generation_config=generation_config) | ||
outputs = tokenizer.batch_decode(outputs, skip_special_tokens=True) | ||
return outputs | ||
|
||
|
||
def setup_seed(seed): | ||
torch.manual_seed(seed) | ||
torch.random.manual_seed(seed) | ||
torch.cuda.manual_seed_all(seed) | ||
np.random.seed(seed) | ||
random.seed(seed) | ||
|
||
|
||
if __name__ == "__main__": | ||
test_model() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters