forked from AMICI-dev/AMICI
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add AmiciPetabProblem class for handling PEtab-defined simulation con…
…ditions Makes it a bit easier to work with PEtab problems interactively or when implementing some PEtab-based objective function (AMICI-dev#962).
- Loading branch information
Showing
1 changed file
with
253 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,253 @@ | ||
"""PEtab-problem based simulations.""" | ||
import copy | ||
from typing import Optional, Sequence, Union | ||
|
||
import amici | ||
import pandas as pd | ||
import petab | ||
from petab.C import ( | ||
DATASET_ID, | ||
NOISE_PARAMETERS, | ||
OBSERVABLE_ID, | ||
PREEQUILIBRATION_CONDITION_ID, | ||
SIMULATION, | ||
SIMULATION_CONDITION_ID, | ||
TIME, | ||
) | ||
|
||
from .conditions import create_edatas, fill_in_parameters | ||
from .parameter_mapping import create_parameter_mapping | ||
|
||
|
||
class AmiciPetabProblem: | ||
"""Manage experimental conditions based on a PEtab problem definition. | ||
Create :class:`ExpData` objects from a PEtab problem definition, handle | ||
parameter scales and parameter mapping. | ||
:param petab_problem: PEtab problem definition. | ||
:param amici_model: AMICI model | ||
:param amici_solver: AMICI solver (Solver with default options will be | ||
used if not provided). | ||
:param problem_parameters: Problem parameters to use for simulation | ||
(default: PEtab nominal values and model values). | ||
:param scaled_parameters: Whether the provided parameters are on PEtab | ||
`parameterScale` or not. | ||
:param simulation_conditions: Simulation conditions to use for simulation. | ||
It Can be used to subset the conditions in the PEtab problem. | ||
All subsequent operations will only be performed based on that subset. | ||
By default, all conditions are used. | ||
:param store_edatas: Whether to create and store all ExpData objects for | ||
all conditions upfront. If set to False, ExpData objects will be | ||
created and disposed of on the fly during simulation. This can save | ||
memory if many conditions are simulated. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
petab_problem: petab.Problem, | ||
amici_model: amici.Model, | ||
problem_parameters: Optional[dict[str, float]] = None, | ||
# move to a separate AmiciPetabProblemSimulator class? | ||
amici_solver: Optional[amici.Solver] = None, | ||
scaled_parameters: Optional[bool] = False, | ||
simulation_conditions: Union[pd.DataFrame, list[dict]] = None, | ||
store_edatas: bool = True, | ||
): | ||
self._petab_problem = petab_problem | ||
self._amici_model = amici_model | ||
self._amici_solver = amici_solver | ||
self._scaled_parameters = scaled_parameters | ||
|
||
self._simulation_conditions = simulation_conditions or ( | ||
petab_problem.get_simulation_conditions_from_measurement_df() | ||
) | ||
if not isinstance(self._simulation_conditions, pd.DataFrame): | ||
self._simulation_conditions = pd.DataFrame( | ||
self._simulation_conditions | ||
) | ||
if ( | ||
preeq_id := PREEQUILIBRATION_CONDITION_ID | ||
in self._simulation_conditions | ||
): | ||
self._simulation_conditions[ | ||
preeq_id | ||
] = self._simulation_conditions[preeq_id].fillna("") | ||
|
||
if problem_parameters is None: | ||
# Use PEtab nominal values as default | ||
self._problem_parameters = self._default_parameters() | ||
if scaled_parameters is True: | ||
raise NotImplementedError( | ||
"scaled_parameters=True in combination with default " | ||
"parameters is not implemented yet." | ||
) | ||
scaled_parameters = False | ||
else: | ||
self._problem_parameters = problem_parameters | ||
self._scaled_parameters = scaled_parameters | ||
|
||
if store_edatas: | ||
self._parameter_mapping = create_parameter_mapping( | ||
petab_problem=self._petab_problem, | ||
simulation_conditions=self._simulation_conditions, | ||
scaled_parameters=self._scaled_parameters, | ||
amici_model=self._amici_model, | ||
) | ||
|
||
self._create_edatas() | ||
else: | ||
self._parameter_mapping = None | ||
self._edatas = None | ||
|
||
def set_parameters( | ||
self, | ||
problem_parameters: dict[str, float], | ||
scaled_parameters: bool = False, | ||
): | ||
"""Set problem parameters. | ||
:param problem_parameters: Problem parameters to use for simulation. | ||
:param scaled_parameters: Whether the provided parameters are on PEtab | ||
`parameterScale` or not. | ||
""" | ||
if scaled_parameters != self._scaled_parameters: | ||
# redo parameter mapping if scale changed | ||
self._parameter_mapping = create_parameter_mapping( | ||
petab_problem=self._petab_problem, | ||
simulation_conditions=self._simulation_conditions, | ||
scaled_parameters=scaled_parameters, | ||
amici_model=self._amici_model, | ||
) | ||
|
||
self._problem_parameters = problem_parameters | ||
self._scaled_parameters = scaled_parameters | ||
|
||
if self._edatas: | ||
fill_in_parameters( | ||
edatas=self._edatas, | ||
problem_parameters=self._problem_parameters, | ||
scaled_parameters=self._scaled_parameters, | ||
parameter_mapping=self._parameter_mapping, | ||
amici_model=self._amici_model, | ||
) | ||
|
||
def get_edata( | ||
self, condition_id: str, preequilibration_condition_id: str | ||
) -> amici.ExpData: | ||
"""Get ExpData object for a given condition. | ||
NOTE: If `store_edatas=True` was passed to the constructor and the | ||
returned object is modified, the changes will be reflected in the | ||
internal ExpData objects. Also, if parameter values of | ||
AmiciPetabProblem are changed, all ExpData objects will be updated. | ||
Create a deep copy if you want to avoid this. | ||
:param condition_id: PEtab Condition ID | ||
:param preequilibration_condition_id: PEtab Preequilibration condition ID | ||
:return: ExpData object | ||
""" | ||
# exists or has to be created? | ||
if self._edatas: | ||
edata_id = condition_id | ||
if preequilibration_condition_id: | ||
edata_id += "+" + preequilibration_condition_id | ||
|
||
for edata in self._edatas: | ||
if edata.id == edata_id: | ||
return edata | ||
|
||
return self._create_edata(condition_id, preequilibration_condition_id) | ||
|
||
def get_edatas(self): | ||
"""Get all ExpData objects. | ||
NOTE: If `store_edatas=True` was passed to the constructor and the | ||
returned objects are modified, the changes will be reflected in the | ||
internal ExpData objects. Also, if parameter values of | ||
AmiciPetabProblem are changed, all ExpData objects will be updated. | ||
Create a deep copy if you want to avoid this. | ||
:return: List of ExpData objects | ||
""" | ||
if self._edatas: | ||
# shallow copy | ||
return self._edatas.copy() | ||
|
||
# not storing edatas - create and return | ||
self._create_edatas() | ||
result = self._edatas | ||
self._edatas = [] | ||
return result | ||
|
||
def _create_edata( | ||
self, condition_id: str, preequilibration_condition_id: str | ||
) -> amici.ExpData: | ||
"""Create ExpData object for a given condition. | ||
:param condition_id: PEtab Condition ID | ||
:param preequilibration_condition_id: PEtab Preequilibration condition ID | ||
:return: ExpData object | ||
""" | ||
simulation_condition = pd.DataFrame( | ||
[ | ||
{ | ||
SIMULATION_CONDITION_ID: condition_id, | ||
PREEQUILIBRATION_CONDITION_ID: preequilibration_condition_id | ||
or "", | ||
} | ||
] | ||
) | ||
edatas = create_edatas( | ||
amici_model=self._amici_model, | ||
petab_problem=self._petab_problem, | ||
simulation_conditions=simulation_condition, | ||
) | ||
parameter_mapping = create_parameter_mapping( | ||
petab_problem=self._petab_problem, | ||
simulation_conditions=simulation_condition, | ||
scaled_parameters=self._scaled_parameters, | ||
amici_model=self._amici_model, | ||
) | ||
|
||
# Fill parameters in ExpDatas (in-place) | ||
fill_in_parameters( | ||
edatas=edatas, | ||
problem_parameters=self._problem_parameters, | ||
scaled_parameters=self._scaled_parameters, | ||
parameter_mapping=parameter_mapping, | ||
amici_model=self._amici_model, | ||
) | ||
|
||
if len(edatas) != 1: | ||
raise AssertionError("Expected exactly one ExpData object.") | ||
return edatas[0] | ||
|
||
@property | ||
def solver(self): | ||
"""Get the solver.""" | ||
return self._amici_solver or self._amici_model.getSolver() | ||
|
||
def _create_edatas( | ||
self, | ||
): | ||
"""Create ExpData objects from PEtab problem definition.""" | ||
self._edatas = create_edatas( | ||
amici_model=self._amici_model, | ||
petab_problem=self._petab_problem, | ||
simulation_conditions=self._simulation_conditions, | ||
) | ||
|
||
fill_in_parameters( | ||
edatas=self._edatas, | ||
problem_parameters=self._problem_parameters, | ||
scaled_parameters=self._scaled_parameters, | ||
parameter_mapping=self._parameter_mapping, | ||
amici_model=self._amici_model, | ||
) | ||
|
||
def _default_parameters(self) -> dict[str, float]: | ||
return { | ||
t.Index: getattr(t, petab.NOMINAL_VALUE) | ||
for t in self._petab_problem.parameter_df.itertuples() | ||
} |