Skip to content

Commit

Permalink
Add AmiciPetabProblem class for handling PEtab-defined simulation con…
Browse files Browse the repository at this point in the history
…ditions

Makes it a bit easier to work with PEtab problems interactively or when implementing some PEtab-based objective function (AMICI-dev#962).
  • Loading branch information
dweindl committed Jan 3, 2024
1 parent da93984 commit 0574214
Showing 1 changed file with 253 additions and 0 deletions.
253 changes: 253 additions & 0 deletions python/sdist/amici/petab/petab_problem.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,253 @@
"""PEtab-problem based simulations."""
import copy
from typing import Optional, Sequence, Union

import amici
import pandas as pd
import petab
from petab.C import (
DATASET_ID,
NOISE_PARAMETERS,
OBSERVABLE_ID,
PREEQUILIBRATION_CONDITION_ID,
SIMULATION,
SIMULATION_CONDITION_ID,
TIME,
)

from .conditions import create_edatas, fill_in_parameters
from .parameter_mapping import create_parameter_mapping


class AmiciPetabProblem:
"""Manage experimental conditions based on a PEtab problem definition.
Create :class:`ExpData` objects from a PEtab problem definition, handle
parameter scales and parameter mapping.
:param petab_problem: PEtab problem definition.
:param amici_model: AMICI model
:param amici_solver: AMICI solver (Solver with default options will be
used if not provided).
:param problem_parameters: Problem parameters to use for simulation
(default: PEtab nominal values and model values).
:param scaled_parameters: Whether the provided parameters are on PEtab
`parameterScale` or not.
:param simulation_conditions: Simulation conditions to use for simulation.
It Can be used to subset the conditions in the PEtab problem.
All subsequent operations will only be performed based on that subset.
By default, all conditions are used.
:param store_edatas: Whether to create and store all ExpData objects for
all conditions upfront. If set to False, ExpData objects will be
created and disposed of on the fly during simulation. This can save
memory if many conditions are simulated.
"""

def __init__(
self,
petab_problem: petab.Problem,
amici_model: amici.Model,
problem_parameters: Optional[dict[str, float]] = None,
# move to a separate AmiciPetabProblemSimulator class?
amici_solver: Optional[amici.Solver] = None,
scaled_parameters: Optional[bool] = False,
simulation_conditions: Union[pd.DataFrame, list[dict]] = None,
store_edatas: bool = True,
):
self._petab_problem = petab_problem
self._amici_model = amici_model
self._amici_solver = amici_solver
self._scaled_parameters = scaled_parameters

self._simulation_conditions = simulation_conditions or (
petab_problem.get_simulation_conditions_from_measurement_df()
)
if not isinstance(self._simulation_conditions, pd.DataFrame):
self._simulation_conditions = pd.DataFrame(
self._simulation_conditions
)
if (
preeq_id := PREEQUILIBRATION_CONDITION_ID
in self._simulation_conditions
):
self._simulation_conditions[
preeq_id
] = self._simulation_conditions[preeq_id].fillna("")

if problem_parameters is None:
# Use PEtab nominal values as default
self._problem_parameters = self._default_parameters()
if scaled_parameters is True:
raise NotImplementedError(
"scaled_parameters=True in combination with default "
"parameters is not implemented yet."
)
scaled_parameters = False
else:
self._problem_parameters = problem_parameters
self._scaled_parameters = scaled_parameters

if store_edatas:
self._parameter_mapping = create_parameter_mapping(
petab_problem=self._petab_problem,
simulation_conditions=self._simulation_conditions,
scaled_parameters=self._scaled_parameters,
amici_model=self._amici_model,
)

self._create_edatas()
else:
self._parameter_mapping = None
self._edatas = None

def set_parameters(
self,
problem_parameters: dict[str, float],
scaled_parameters: bool = False,
):
"""Set problem parameters.
:param problem_parameters: Problem parameters to use for simulation.
:param scaled_parameters: Whether the provided parameters are on PEtab
`parameterScale` or not.
"""
if scaled_parameters != self._scaled_parameters:
# redo parameter mapping if scale changed
self._parameter_mapping = create_parameter_mapping(
petab_problem=self._petab_problem,
simulation_conditions=self._simulation_conditions,
scaled_parameters=scaled_parameters,
amici_model=self._amici_model,
)

self._problem_parameters = problem_parameters
self._scaled_parameters = scaled_parameters

if self._edatas:
fill_in_parameters(
edatas=self._edatas,
problem_parameters=self._problem_parameters,
scaled_parameters=self._scaled_parameters,
parameter_mapping=self._parameter_mapping,
amici_model=self._amici_model,
)

def get_edata(
self, condition_id: str, preequilibration_condition_id: str
) -> amici.ExpData:
"""Get ExpData object for a given condition.
NOTE: If `store_edatas=True` was passed to the constructor and the
returned object is modified, the changes will be reflected in the
internal ExpData objects. Also, if parameter values of
AmiciPetabProblem are changed, all ExpData objects will be updated.
Create a deep copy if you want to avoid this.
:param condition_id: PEtab Condition ID
:param preequilibration_condition_id: PEtab Preequilibration condition ID
:return: ExpData object
"""
# exists or has to be created?
if self._edatas:
edata_id = condition_id
if preequilibration_condition_id:
edata_id += "+" + preequilibration_condition_id

for edata in self._edatas:
if edata.id == edata_id:
return edata

return self._create_edata(condition_id, preequilibration_condition_id)

def get_edatas(self):
"""Get all ExpData objects.
NOTE: If `store_edatas=True` was passed to the constructor and the
returned objects are modified, the changes will be reflected in the
internal ExpData objects. Also, if parameter values of
AmiciPetabProblem are changed, all ExpData objects will be updated.
Create a deep copy if you want to avoid this.
:return: List of ExpData objects
"""
if self._edatas:
# shallow copy
return self._edatas.copy()

# not storing edatas - create and return
self._create_edatas()
result = self._edatas
self._edatas = []
return result

def _create_edata(
self, condition_id: str, preequilibration_condition_id: str
) -> amici.ExpData:
"""Create ExpData object for a given condition.
:param condition_id: PEtab Condition ID
:param preequilibration_condition_id: PEtab Preequilibration condition ID
:return: ExpData object
"""
simulation_condition = pd.DataFrame(
[
{
SIMULATION_CONDITION_ID: condition_id,
PREEQUILIBRATION_CONDITION_ID: preequilibration_condition_id
or "",
}
]
)
edatas = create_edatas(
amici_model=self._amici_model,
petab_problem=self._petab_problem,
simulation_conditions=simulation_condition,
)
parameter_mapping = create_parameter_mapping(
petab_problem=self._petab_problem,
simulation_conditions=simulation_condition,
scaled_parameters=self._scaled_parameters,
amici_model=self._amici_model,
)

# Fill parameters in ExpDatas (in-place)
fill_in_parameters(
edatas=edatas,
problem_parameters=self._problem_parameters,
scaled_parameters=self._scaled_parameters,
parameter_mapping=parameter_mapping,
amici_model=self._amici_model,
)

if len(edatas) != 1:
raise AssertionError("Expected exactly one ExpData object.")
return edatas[0]

@property
def solver(self):
"""Get the solver."""
return self._amici_solver or self._amici_model.getSolver()

def _create_edatas(
self,
):
"""Create ExpData objects from PEtab problem definition."""
self._edatas = create_edatas(
amici_model=self._amici_model,
petab_problem=self._petab_problem,
simulation_conditions=self._simulation_conditions,
)

fill_in_parameters(
edatas=self._edatas,
problem_parameters=self._problem_parameters,
scaled_parameters=self._scaled_parameters,
parameter_mapping=self._parameter_mapping,
amici_model=self._amici_model,
)

def _default_parameters(self) -> dict[str, float]:
return {
t.Index: getattr(t, petab.NOMINAL_VALUE)
for t in self._petab_problem.parameter_df.itertuples()
}

0 comments on commit 0574214

Please sign in to comment.