Skip to content

Preprocess Waymo dataset for panoptic segmentation with Coco-Panoptic style annotations

License

Notifications You must be signed in to change notification settings

dymnmysn/waymo2coco

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This repo is for converting Waymo dataset to Coco-Panoptic format for panoptic-segmentation.
Assuming the folder structure is as follows:
    -parent_dataset_folder
        -train
            -camera_image
                -57132587708734824_1020_000_1040_000.parquet
                -6128311556082453976_2520_000_2540_000.parquet
                ︙
            -camera_segmentation
                -57132587708734824_1020_000_1040_000.parquet
                -6128311556082453976_2520_000_2540_000.parquet
                ︙
        -val
            ︙
        -test
            ︙ 
        -waymo2coco
            -template.json
            -process.py
            -waymo2coco.py
------------------AFTER RUNNING THE CODE---------------------------
---------THE FOLLOWING FILES WILL BE GENERATED---------------------
        -formattedWaymo
            -train
                -0.jpg
                -1.jpg
                ︙
            -annotations
                -panoptic_train
                    -0.png
                    -1.png
                    ︙
                -panoptic_train.json
            -contextimmap_train.json

To convert the dataset you need to clone the repo to parent_folder.
Then by simply proceeding to waymo2coco folder and running process.py would be enough.

    conda create -n waymotococo python
    git clone ...git
    cd waymo2coco
    conda activate waymotococo
    pip install -r reqirements.txt
    python process.py

You can convert train or validation or test data. Train is default. For validation and test data you should run process.py with suitable arguments rather than default ones.

About

Preprocess Waymo dataset for panoptic segmentation with Coco-Panoptic style annotations

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages