Skip to content

MTReclib provides a PyTorch implementation of multi-task recommendation models and common datasets.

License

Notifications You must be signed in to change notification settings

easezyc/Multitask-Recommendation-Library

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-task Recommendation in PyTorch

MIT License Awesome

MTRec


Introduction

MTReclib provides a PyTorch implementation of multi-task recommendation models and common datasets. Currently, we implmented 7 multi-task recommendation models to enable fair comparison and boost the development of multi-task recommendation algorithms. The currently supported algorithms include:

Datasets

For the processed dataset, you should directly put the dataset in './data/' and unpack it. For the original dataset, you should put it in './data/' and run 'python preprocess.py --dataset_name NL'.

Requirements

  • Python 3.6
  • PyTorch > 1.10
  • pandas
  • numpy
  • tqdm

Run

Parameter Configuration:

  • dataset_name: choose a dataset in ['AliExpress_NL', 'AliExpress_FR', 'AliExpress_ES', 'AliExpress_US'], default for AliExpress_NL
  • dataset_path: default for ./data
  • model_name: choose a model in ['singletask', 'sharedbottom', 'omoe', 'mmoe', 'ple', 'aitm', 'metaheac'], default for metaheac
  • epoch: the number of epochs for training, default for 50
  • task_num: the number of tasks, default for 2 (CTR & CVR)
  • expert_num: the number of experts for ['omoe', 'mmoe', 'ple', 'metaheac'], default for 8
  • learning_rate: default for 0.001
  • batch_size: default for 2048
  • weight_decay: default for 1e-6
  • device: the device to run the code, default for cuda:0
  • save_dir: the folder to save parameters, default for chkpt

You can run a model through:

python main.py --model_name metaheac --num_expert 8 --dataset_name AliExpress_NL

Results

For fair comparisons, the learning rate is 0.001, the dimension of embeddings is 128, and mini-batch size is 2048 equally for all models. We report the mean AUC and Logloss over five random runs. Best results are in boldface.

Methods AliExpress (Netherlands, NL) AliExpress (Spain, ES)
CTR CTCVR CTR CTCVR
AUC Logloss AUC Logloss AUC Logloss AUC Logloss
SingleTask 0.7222 0.1085 0.8590 0.00609 0.7266 0.1207 0.8855 0.00456
Shared-Bottom 0.7228 0.1083 0.8511 0.00620 0.7287 0.1204 0.8866 0.00452
OMoE 0.7254 0.1081 0.8611 0.00614 0.7253 0.1209 0.8859 0.00452
MMoE 0.7234 0.1080 0.8606 0.00607 0.7285 0.1205 0.8898 0.00450
PLE 0.7292 0.1088 0.8591 0.00631 0.7273 0.1223 0.8913 0.00461
AITM 0.7240 0.1078 0.8577 0.00611 0.7290 0.1203 0.8885 0.00451
MetaHeac 0.7263 0.1077 0.8615 0.00606 0.7299 0.1203 0.8883 0.00450
Methods AliExpress (French, FR) AliExpress (America, US)
CTR CTCVR CTR CTCVR
AUC Logloss AUC Logloss AUC Logloss AUC Logloss
SingleTask 0.7259 0.1002 0.8737 0.00435 0.7061 0.1004 0.8637 0.00381
Shared-Bottom 0.7245 0.1004 0.8700 0.00439 0.7029 0.1008 0.8698 0.00381
OMoE 0.7257 0.1006 0.8781 0.00432 0.7049 0.1007 0.8701 0.00381
MMoE 0.7216 0.1010 0.8811 0.00431 0.7043 0.1006 0.8758 0.00377
PLE 0.7276 0.1014 0.8805 0.00451 0.7138 0.0992 0.8675 0.00403
AITM 0.7236 0.1005 0.8763 0.00431 0.7048 0.1004 0.8730 0.00377
MetaHeac 0.7249 0.1005 0.8813 0.00429 0.7089 0.1001 0.8743 0.00378

File Structure

.
├── main.py
├── README.md
├── models
│   ├── layers.py
│   ├── aitm.py
│   ├── omoe.py
│   ├── mmoe.py
│   ├── metaheac.py
│   ├── ple.py
│   ├── singletask.py
│   └── sharedbottom.py
└── data
    ├── preprocess.py         # Preprocess the original data
    ├── AliExpress_NL         # AliExpressDataset from Netherlands
    	├── train.csv
	└── test.py
    ├── AliExpress_ES         # AliExpressDataset from Spain
    ├── AliExpress_FR         # AliExpressDataset from French
    └── AliExpress_US         # AliExpressDataset from America

Contact

If you have any problem about this library, please create an issue or send us an Email at:

Reference

If you use this repository, please cite the following papers:

@inproceedings{zhu2021learning,
  title={Learning to Expand Audience via Meta Hybrid Experts and Critics for Recommendation and Advertising},
  author={Zhu, Yongchun and Liu, Yudan and Xie, Ruobing and Zhuang, Fuzhen and Hao, Xiaobo and Ge, Kaikai and Zhang, Xu and Lin, Leyu and Cao, Juan},
  booktitle={Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery \& Data Mining},
  pages={4005--4013},
  year={2021}
}
@inproceedings{xi2021modeling,
  title={Modeling the sequential dependence among audience multi-step conversions with multi-task learning in targeted display advertising},
  author={Xi, Dongbo and Chen, Zhen and Yan, Peng and Zhang, Yinger and Zhu, Yongchun and Zhuang, Fuzhen and Chen, Yu},
  booktitle={Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery \& Data Mining},
  pages={3745--3755},
  year={2021}
}

Some model implementations and util functions refers to these nice repositories.

  • pytorch-fm: This package provides a PyTorch implementation of factorization machine models and common datasets in CTR prediction.
  • MetaHeac: This is an official implementation for Learning to Expand Audience via Meta Hybrid Experts and Critics for Recommendation and Advertising.

Releases

No releases published

Packages

No packages published

Languages