-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdivergencia-1000hpa.py
166 lines (130 loc) · 5.03 KB
/
divergencia-1000hpa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Sep 16 16:24:12 2022
@author: beatrzzi
"""
#importando bibliotecas
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
import matplotlib.colors
import metpy.calc as mpcalc
from metpy.units import units
import numpy as np
import xarray as xr
import cartopy.io.shapereader as shpreader # Import shapefiles
from datetime import datetime, timedelta # basicas datas e tipos de tempo
import cmocean
import matplotlib.colors as mcolors
#dataset
file_1 = xr.open_dataset('/home/ladsin/Downloads/GFS_analise_11_13.nc4').metpy.parse_cf()
file_1 = file_1.assign_coords(dict(
longitude = (((file_1.longitude.values + 180) % 360) - 180))
).sortby('longitude')
#extent
lon_0 = -120.
lon_1 = -20.
lat_0 = 10.
lat_1 = -55.
lon_slice = slice(lon_0, lon_1)
lat_slice = slice(lat_0, lat_1)
#pega as lat/lon
lats = file_1.latitude.sel(latitude=lat_slice).values
lons = file_1.longitude.sel(longitude=lon_slice).values
#seta as variaveis
level_1 = 850 * units('hPa')
# CRIANDO O CMAP E NORM PARA A COLORBAR
# intevalos da divergencia - umidade
divq_min = -50
divq_max = -20
interval_1 = 2 # de quanto em quanto voce quer que varie
levels_1 = np.arange(divq_min, divq_max, interval_1)
# n_levs = 1 # numero de intervalos
# divlevs = np.round(np.linspace(divq_min, divq_max, n_levs), 1)
# # lista de cores, em ordem crescete. RGBA
# colors = ['mediumseagreen', 'mediumaquamarine', 'palegreen', 'white']
# # cria um novo cmap a partir do pre-existente
# cmap = mcolors.LinearSegmentedColormap.from_list(
# 'Custom cmap', colors, divlevs.shape[0] - 1)
# cmap.set_over('white')
# cmap.set_under("seagreen")
# # nromaliza com base nos intervalos
# norm = mcolors.BoundaryNorm(divlevs, cmap.N) # util para o PCOLORMESH, CONTOURF nao usa
# variaveis repetidas em cada loop
dx, dy = mpcalc.lat_lon_grid_deltas(lons, lats)
for i in range(len(file_1.variables['time'])):
#divergencia
args = dict(
time = file_1.time[i] ,
vertical=level_1,
latitude=lat_slice,
longitude=lon_slice
)
u = file_1['u-component_of_wind_isobaric'].metpy.sel(**args).metpy.unit_array.squeeze()
v = file_1['v-component_of_wind_isobaric'].metpy.sel(**args).metpy.unit_array.squeeze()
divergencia = mpcalc.divergence(u, v, dx=dx, dy=dy, x_dim=- 1, y_dim=- 2) * 1e6
#data
vtime = file_1.time.data[i].astype('datetime64[ms]').astype('O')
# escolha o tamanho do plot em polegadas (largura x altura)
plt.figure(figsize=(25,25))
# usando a projeção da coordenada cilindrica equidistante
ax = plt.axes(projection=ccrs.PlateCarree())
gl = ax.gridlines(crs=ccrs.PlateCarree(),
color='gray',
alpha=1.0,
linestyle='--',
linewidth=0.5,
xlocs=np.arange(-180, 180, 5),
ylocs=np.arange(-90, 90, 5),
draw_labels=True
)
gl.top_labels = False
gl.right_labels = False
gl.top_labels = False
gl.right_labels = False
gl.xlabel_style = {'size': 29, 'color': 'black'}
gl.ylabel_style = {'size': 29, 'color': 'black'}
# plota a imagem divergencia
sombreado = ax.contourf(lons,
lats,
divergencia,
cmap = cmocean.cm.algae_r,
levels = levels_1,
extend = 'min'
)
ax.streamplot(lons, lats, u, v, density=[3,3], linewidth=1.5, color='black', transform=ccrs.PlateCarree())
#adicionando shapefile
shapefile = list(
shpreader.Reader(
'/work/archive/Everson/Coqueiro/script_gfs/GFS-analysis_and_forecast-main/shapefiles/BR_UF_2021/BR_UF_2021.shp'
).geometries()
)
ax.add_geometries(
shapefile, ccrs.PlateCarree(),
edgecolor = 'black',
facecolor='none',
linewidth=0.5
)
# adiciona continente e bordas
ax.coastlines(resolution='10m', color='black', linewidth=3)
ax.add_feature(cfeature.BORDERS, edgecolor='black', linewidth=3)
#adiciona legenda
barra_de_cores = plt.colorbar(sombreado,
orientation = 'horizontal',
pad=0.04,
fraction=0.04
)
font_size = 20 # Adjust as appropriate.
barra_de_cores.ax.tick_params(labelsize=font_size)
# Add a title
plt.title('Convergência em 850hPa',
fontweight='bold',
fontsize=35,
loc='left'
)
#previsao
#plt.title('Valid time: {}'.format(vtime), fontsize=35, loc='right')
#analise
plt.title('Análise: {}'.format(vtime), fontsize=35, loc='right')
plt.savefig(f'/work/archive/Everson/Coqueiro/Estagio/plots/div/div_850_{vtime}.png', bbox_inches='tight')