-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvorticidade_pnmm_gfs.py
178 lines (147 loc) · 5.48 KB
/
vorticidade_pnmm_gfs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Aug 30 16:52:10 2022
@author: coqueiro
"""
#importando bibliotecas
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
import metpy.calc as mpcalc
from metpy.units import units
import numpy as np
import xarray as xr
import cartopy.io.shapereader as shpreader # Import shapefiles
from datetime import datetime, timedelta # basicas datas e tipos de tempo
import cmocean
#dataset
file_1 = xr.open_dataset(
'/home/ladsin/Downloads/GFS_analise_11_13.nc4'
).metpy.parse_cf()
file_1 = file_1.assign_coords(dict(
longitude = (((file_1.longitude.values + 180) % 360) - 180))
).sortby('longitude')
#seleciona as fatias de lat e lon
lon_0 = -120.
lon_1 = -20.
lat_0 = 10.
lat_1 = -55.
lon_slice = slice(lon_0, lon_1)
lat_slice = slice(lat_0, lat_1)
#pega as lat/lon
lats = file_1.latitude.sel(latitude=lat_slice).values
lons = file_1.longitude.sel(longitude=lon_slice).values
#seleciona o nivel em hPa
level = 1000 * units('hPa')
for i in range(len(file_1.variables['time'])):
u = file_1['u-component_of_wind_isobaric'].metpy.sel(
time = file_1.time[i],
vertical=level,
latitude=lat_slice,
longitude=lon_slice
).metpy.unit_array.squeeze()
v = file_1['v-component_of_wind_isobaric'].metpy.sel(
time = file_1.time[i],
vertical=level,
latitude=lat_slice,
longitude=lon_slice
).metpy.unit_array.squeeze()
pnmm = file_1.Pressure_reduced_to_MSL_msl.metpy.sel(
time = file_1.time[i],
latitude=lat_slice,
longitude=lon_slice
).metpy.unit_array.squeeze()*0.01*units.hPa/units.Pa
#data
vtime = file_1.time.data[i].astype('datetime64[ms]').astype('O')
dx, dy = mpcalc.lat_lon_grid_deltas(lons, lats)
vorticidade = mpcalc.vorticity(u, v, dx=dx, dy=dy, x_dim=- 1, y_dim=- 2)*10**5
# escolha o tamanho do plot em polegadas (largura x altura)
plt.figure(figsize=(25,25))
# usando a projeção da coordenada cilindrica equidistante
ax = plt.axes(projection=ccrs.PlateCarree())
gl = ax.gridlines(crs=ccrs.PlateCarree(),
color='gray',
alpha=1.0,
linestyle='--',
linewidth=0.5,
xlocs=np.arange(-180, 180, 10),
ylocs=np.arange(-90, 90, 10),
draw_labels=True
)
gl.top_labels = False
gl.right_labels = False
gl.xlabel_style = {'size': 29, 'color': 'black'}
gl.ylabel_style = {'size': 29, 'color': 'black'}
# intevalos da pnmm
intervalo_min2 = np.amin(np.array(pnmm))
intervalo_max2 = np.amax(np.array(pnmm))
interval_2 = 2 # de quanto em quanto voce quer que varie
levels_2 = np.arange(intervalo_min2, intervalo_max2, interval_2)
# intevalos da vorticidade
intervalo_min3 = -20
intervalo_max3 = -2
interval_3 = 2 # de quanto em quanto voce quer que varie
levels_3 = np.arange(intervalo_min3, intervalo_max3, interval_3)
# adiciona mascara de terra
ax.add_feature(cfeature.LAND)
# plota a imagem geopotencial
sombreado = ax.contourf(lons,
lats,
vorticidade,
cmap=cmocean.cm.dense_r,
levels = levels_3,
extend = 'min'
)
# plota a imagem pressao
contorno = ax.contour(lons,
lats,
pnmm,
colors='black',
linewidths=2,
levels=levels_2
)
ax.clabel(contorno,
inline = 1,
inline_spacing = 1,
fontsize=20,
fmt = '%3.0f',
colors= 'black'
)
#adicionando shapefile
shapefile = list(
shpreader.Reader(
'/work/archive/Everson/Coqueiro/script_gfs/GFS-analysis_and_forecast-main/shapefiles/BR_UF_2021/BR_UF_2021.shp'
).geometries()
)
ax.add_geometries(
shapefile,
ccrs.PlateCarree(),
edgecolor = 'black',
facecolor='none',
linewidth=0.5
)
# adiciona continente e bordas
ax.coastlines(resolution='10m', color='black', linewidth=3)
ax.add_feature(cfeature.BORDERS, edgecolor='black', linewidth=3)
# adiciona legenda
barra_de_cores = plt.colorbar(sombreado,
orientation = 'horizontal',
pad=0.04,
fraction=0.04
)
font_size = 20 # Adjust as appropriate.
barra_de_cores.ax.tick_params(labelsize=font_size)
# Add a title
plt.title('Vorticidade relativa (1/s) - 1000 hPa',
fontweight='bold',
fontsize=35,
loc='left'
)
#previsao
#plt.title('Valid Time: {}'.format(vtime), fontsize=35, loc='right')
#analise
plt.title('Análise: {}'.format(vtime), fontsize=35, loc='right')
#--------------------------------------------------------------------------
# Salva imagem
plt.savefig(f'/work/archive/Everson/Coqueiro/Estagio/plots/vort_1000/vort_1000_{format(vtime)}.png', bbox_inches='tight')