Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Speed up sharing-aware extractor and fix spelling #11

Merged
merged 2 commits into from
Oct 23, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions plot.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,8 +31,8 @@ def process(js, extractors=[]):
assert len(extractors) == 2
e1, e2 = extractors

e1_cummulative=0
e2_cummulative=0
e1_cumulative=0
e2_cumulative=0

summaries = {}

Expand All @@ -45,8 +45,8 @@ def process(js, extractors=[]):
dag_ratio = d[e1]["dag"] / d[e2]["dag"]
micros_ratio = max(1, d[e1]["micros"]) / max(1, d[e2]["micros"])

e1_cummulative += d[e1]["micros"];
e2_cummulative += d[e2]["micros"];
e1_cumulative += d[e1]["micros"];
e2_cumulative += d[e2]["micros"];

summaries[name] = {
"tree": tree_ratio,
Expand All @@ -57,8 +57,8 @@ def process(js, extractors=[]):
print(f"Error processing {name}")
raise e

print(f"Cummulative time for {e1}: {e1_cummulative/1000:.0f}ms")
print(f"Cummulative time for {e2}: {e2_cummulative/1000:.0f}ms")
print(f"cumulative time for {e1}: {e1_cumulative/1000:.0f}ms")
print(f"cumulative time for {e2}: {e2_cumulative/1000:.0f}ms")

print(f"{e1} / {e2}")

Expand Down
86 changes: 54 additions & 32 deletions src/extract/greedy_dag_1.rs
Original file line number Diff line number Diff line change
Expand Up @@ -17,57 +17,79 @@ impl FasterGreedyDagExtractor {
egraph: &EGraph,
node_id: NodeId,
costs: &HashMap<ClassId, CostSet>,
best_cost: Cost,
) -> CostSet {
let node = &egraph[&node_id];

let cid = egraph.nid_to_cid(&node_id);
// No children -> easy.
if node.children.is_empty() {
return CostSet {
costs: std::collections::HashMap::default(),
total: node.cost,
choice: node_id.clone(),
};
}

let mut desc = 0;
let mut children_cost = Cost::default();
for child in &node.children {
let child_cid = egraph.nid_to_cid(child);
let cs = costs.get(child_cid).unwrap();
desc += cs.costs.len();
children_cost += cs.total;
// Get unique classes of children.
let mut childrens_classes = node
.children
.iter()
.map(|c| egraph.nid_to_cid(&c).clone())
.collect::<Vec<ClassId>>();
childrens_classes.sort();
childrens_classes.dedup();

let first_cost = costs.get(&childrens_classes[0]).unwrap();

if childrens_classes.len() == 1 && (node.cost + first_cost.total > best_cost) {
// Shortcut. Can't be cheaper so return junk.
return CostSet {
costs: std::collections::HashMap::default(),
total: INFINITY,
choice: node_id.clone(),
};
}

let mut cost_set = CostSet {
costs: std::collections::HashMap::with_capacity(desc),
total: Cost::default(),
choice: node_id.clone(),
};
// Clone the biggest set and insert the others into it.
let id_of_biggest = childrens_classes
.iter()
.max_by_key(|s| costs.get(s).unwrap().costs.len())
.unwrap();
let mut result = costs.get(&id_of_biggest).unwrap().costs.clone();
for child_cid in &childrens_classes {
if child_cid == id_of_biggest {
continue;
}

for child in &node.children {
let child_cid = egraph.nid_to_cid(child);
cost_set
.costs
.extend(costs.get(child_cid).unwrap().costs.clone());
let next_cost = &costs.get(child_cid).unwrap().costs;
for (key, value) in next_cost.iter() {
result.insert(key.clone(), value.clone());
}
}

let contains = cost_set.costs.contains_key(&cid.clone());
cost_set.costs.insert(cid.clone(), node.cost); // this node.
let cid = egraph.nid_to_cid(&node_id);
let contains = result.contains_key(&cid);
result.insert(cid.clone(), node.cost);

if contains {
cost_set.total = INFINITY;
let result_cost = if contains {
INFINITY
} else {
if cost_set.costs.len() == desc + 1 {
// No extra duplicates are found, so the cost is the current
// nodes cost + the children's cost.
cost_set.total = children_cost + node.cost;
} else {
cost_set.total = cost_set.costs.values().sum();
}
result.values().sum()
};

cost_set
return CostSet {
costs: result,
total: result_cost,
choice: node_id.clone(),
};
}
}

impl FasterGreedyDagExtractor {
fn check(egraph: &EGraph, node_id: NodeId, costs: &HashMap<ClassId, CostSet>) {
let cid = egraph.nid_to_cid(&node_id);
let previous = costs.get(cid).unwrap().total;
let cs = Self::calculate_cost_set(egraph, node_id, costs);
let cs = Self::calculate_cost_set(egraph, node_id, costs, INFINITY);
println!("{} {}", cs.total, previous);
assert!(cs.total >= previous);
}
Expand Down Expand Up @@ -114,7 +136,7 @@ impl Extractor for FasterGreedyDagExtractor {
prev_cost = lookup.unwrap().total;
}

let cost_set = Self::calculate_cost_set(egraph, node_id.clone(), &costs);
let cost_set = Self::calculate_cost_set(egraph, node_id.clone(), &costs, prev_cost);
if cost_set.total < prev_cost {
costs.insert(class_id.clone(), cost_set);
analysis_pending.extend(parents[class_id].iter().cloned());
Expand Down