Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Event caching #133

Merged
merged 12 commits into from
Aug 24, 2024
Merged

Event caching #133

merged 12 commits into from
Aug 24, 2024

Conversation

ekiefl
Copy link
Owner

@ekiefl ekiefl commented Aug 24, 2024

Based on reviewer feedback (pyOpenSci/software-submission#173), an idea sprouted to cache event times to avoid recalculation at every step of the shot evolution algorithm. This PR implements that.

The results yield improvements in simulation time for random simulations, using ball number as a parameter for simulation complexity:

image

The improvement is more dramatic when the number of balls is dramatically increased:

image

@ekiefl
Copy link
Owner Author

ekiefl commented Aug 24, 2024

Speeds were calculated by running this script with the various provided parameters on both this branch and the main branch (prior to merging):

#! /usr/bin/env python

import numpy as np
import pandas as pd

import pooltool as pt

get_pos = lambda table, ball: (  # noqa E731
    (table.w - 2 * ball.params.R) * np.random.rand() + ball.params.R,
    (table.l - 2 * ball.params.R) * np.random.rand() + ball.params.R,
    ball.params.R,
)


def place_ball(i, balls, table):
    ball = pt.Ball(i)
    while True:
        new_pos = get_pos(table, ball)
        ball.state.rvw[0] = new_pos

        for other in balls.values():
            if pt.ptmath.is_overlapping(
                ball.state.rvw, other.state.rvw, ball.params.R, other.params.R
            ):
                break
        else:
            return ball


def main(args):
    pt.simulate(pt.System.example())

    data = {
        "n": [],
        "mu": [],
        "sigma": [],
        "stddev": [],
    }

    for n in range(2, args.N, args.s):
        times = []

        for _ in range(args.M):
            table = pt.Table.from_table_specs(pt.objects.PocketTableSpecs(l=2, w=1))
            balls = {}
            balls["cue"] = place_ball("cue", balls, table)

            for i in range(n):
                balls[str(i)] = place_ball(str(i), balls, table)

            cue = pt.Cue(cue_ball_id="cue")
            shot = pt.System(cue=cue, table=table, balls=balls)

            shot.strike(V0=10, phi=pt.aim.at_ball(shot, "1"))

            with pt.terminal.TimeCode(quiet=True) as timer:
                pt.simulate(shot, continuous=False, inplace=True)

            times.append(timer.time.total_seconds())

        mu = np.mean(times)
        sigma = np.std(times)

        data["n"].append(n)
        data["mu"].append(mu)
        data["sigma"].append(sigma)
        data["stddev"].append(sigma / np.sqrt(n))

        print(f"Ball count: {n}")
        print(f"Time: {mu:.3f}s +- {sigma:.4f}s")
        print("---")

    df = pd.DataFrame(data)
    df.to_csv(args.output, sep="\t", index=False)


if __name__ == "__main__":
    import argparse

    ap = argparse.ArgumentParser()
    ap.add_argument("-M", type=int, default=200, help="Number of trials")
    ap.add_argument("-N", type=int, default=9, help="Max number of balls")
    ap.add_argument("-s", type=int, default=3, help="Step size")
    ap.add_argument("--output", type=str, required=True, help="Output txt file")
    args = ap.parse_args()
    main(args)

And visualized with this script:

import pandas as pd
import plotly.graph_objects as go

# Load the data
time_dev = pd.read_csv('speed_dev.txt', sep='\t')
time_main = pd.read_csv('speed_main.txt', sep='\t')
time_granular_dev = pd.read_csv('speed_granular_dev.txt', sep='\t')
time_granular_main = pd.read_csv('speed_granular_main.txt', sep='\t')

# Create the first plot
fig = go.Figure()

# Time Dev (dark red)
fig.add_trace(go.Scatter(
    x=time_dev['n'], 
    y=time_dev['mu'], 
    error_y=dict(type='data', array=time_dev['sigma']),
    mode='lines+markers',
    name='Time (cache)',
    line=dict(color='darkred')
))

# Time Main (dark grey)
fig.add_trace(go.Scatter(
    x=time_main['n'], 
    y=time_main['mu'], 
    error_y=dict(type='data', array=time_main['sigma']),
    mode='lines+markers',
    name='Time (no cache)',
    line=dict(color='darkgrey')
))

# Update layout for the first plot
fig.update_layout(
    title='Time Comparison (Caching versus no caching)',
    xaxis_title='Number of balls in simulation',
    yaxis_title='Mean Time (s)',
    legend=dict(x=0.1, y=0.9),
    margin=dict(l=50, r=50, t=50, b=50),
    width=600,
    height=600,
)

# Create the second plot
fig2 = go.Figure()

# Time Granular Dev (dark red)
fig2.add_trace(go.Scatter(
    x=time_granular_dev['n'], 
    y=time_granular_dev['mu'], 
    error_y=dict(type='data', array=time_granular_dev['sigma']),
    mode='lines+markers',
    name='Time (cache)',
    line=dict(color='darkred')
))

# Time Granular Main (dark grey)
fig2.add_trace(go.Scatter(
    x=time_granular_main['n'], 
    y=time_granular_main['mu'], 
    error_y=dict(type='data', array=time_granular_main['sigma']),
    mode='lines+markers',
    name='Time (no cache)',
    line=dict(color='darkgrey')
))

# Update layout for the second plot
fig2.update_layout(
    title='Time Comparison (Caching versus no caching)',
    xaxis_title='Number of balls in simulation',
    yaxis_title='Mean Time (s)',
    legend=dict(x=0.1, y=0.9),
    margin=dict(l=50, r=50, t=50, b=50),
    width=600,
    height=600,
)

# Show figures
fig.show()
fig2.show()

@ekiefl ekiefl merged commit 791f54c into main Aug 24, 2024
8 checks passed
@ekiefl ekiefl deleted the event-cache branch August 24, 2024 21:39
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

1 participant