-
Notifications
You must be signed in to change notification settings - Fork 36
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Event caching #133
Merged
Merged
Event caching #133
Conversation
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Speeds were calculated by running this script with the various provided parameters on both this branch and the main branch (prior to merging): #! /usr/bin/env python
import numpy as np
import pandas as pd
import pooltool as pt
get_pos = lambda table, ball: ( # noqa E731
(table.w - 2 * ball.params.R) * np.random.rand() + ball.params.R,
(table.l - 2 * ball.params.R) * np.random.rand() + ball.params.R,
ball.params.R,
)
def place_ball(i, balls, table):
ball = pt.Ball(i)
while True:
new_pos = get_pos(table, ball)
ball.state.rvw[0] = new_pos
for other in balls.values():
if pt.ptmath.is_overlapping(
ball.state.rvw, other.state.rvw, ball.params.R, other.params.R
):
break
else:
return ball
def main(args):
pt.simulate(pt.System.example())
data = {
"n": [],
"mu": [],
"sigma": [],
"stddev": [],
}
for n in range(2, args.N, args.s):
times = []
for _ in range(args.M):
table = pt.Table.from_table_specs(pt.objects.PocketTableSpecs(l=2, w=1))
balls = {}
balls["cue"] = place_ball("cue", balls, table)
for i in range(n):
balls[str(i)] = place_ball(str(i), balls, table)
cue = pt.Cue(cue_ball_id="cue")
shot = pt.System(cue=cue, table=table, balls=balls)
shot.strike(V0=10, phi=pt.aim.at_ball(shot, "1"))
with pt.terminal.TimeCode(quiet=True) as timer:
pt.simulate(shot, continuous=False, inplace=True)
times.append(timer.time.total_seconds())
mu = np.mean(times)
sigma = np.std(times)
data["n"].append(n)
data["mu"].append(mu)
data["sigma"].append(sigma)
data["stddev"].append(sigma / np.sqrt(n))
print(f"Ball count: {n}")
print(f"Time: {mu:.3f}s +- {sigma:.4f}s")
print("---")
df = pd.DataFrame(data)
df.to_csv(args.output, sep="\t", index=False)
if __name__ == "__main__":
import argparse
ap = argparse.ArgumentParser()
ap.add_argument("-M", type=int, default=200, help="Number of trials")
ap.add_argument("-N", type=int, default=9, help="Max number of balls")
ap.add_argument("-s", type=int, default=3, help="Step size")
ap.add_argument("--output", type=str, required=True, help="Output txt file")
args = ap.parse_args()
main(args) And visualized with this script: import pandas as pd
import plotly.graph_objects as go
# Load the data
time_dev = pd.read_csv('speed_dev.txt', sep='\t')
time_main = pd.read_csv('speed_main.txt', sep='\t')
time_granular_dev = pd.read_csv('speed_granular_dev.txt', sep='\t')
time_granular_main = pd.read_csv('speed_granular_main.txt', sep='\t')
# Create the first plot
fig = go.Figure()
# Time Dev (dark red)
fig.add_trace(go.Scatter(
x=time_dev['n'],
y=time_dev['mu'],
error_y=dict(type='data', array=time_dev['sigma']),
mode='lines+markers',
name='Time (cache)',
line=dict(color='darkred')
))
# Time Main (dark grey)
fig.add_trace(go.Scatter(
x=time_main['n'],
y=time_main['mu'],
error_y=dict(type='data', array=time_main['sigma']),
mode='lines+markers',
name='Time (no cache)',
line=dict(color='darkgrey')
))
# Update layout for the first plot
fig.update_layout(
title='Time Comparison (Caching versus no caching)',
xaxis_title='Number of balls in simulation',
yaxis_title='Mean Time (s)',
legend=dict(x=0.1, y=0.9),
margin=dict(l=50, r=50, t=50, b=50),
width=600,
height=600,
)
# Create the second plot
fig2 = go.Figure()
# Time Granular Dev (dark red)
fig2.add_trace(go.Scatter(
x=time_granular_dev['n'],
y=time_granular_dev['mu'],
error_y=dict(type='data', array=time_granular_dev['sigma']),
mode='lines+markers',
name='Time (cache)',
line=dict(color='darkred')
))
# Time Granular Main (dark grey)
fig2.add_trace(go.Scatter(
x=time_granular_main['n'],
y=time_granular_main['mu'],
error_y=dict(type='data', array=time_granular_main['sigma']),
mode='lines+markers',
name='Time (no cache)',
line=dict(color='darkgrey')
))
# Update layout for the second plot
fig2.update_layout(
title='Time Comparison (Caching versus no caching)',
xaxis_title='Number of balls in simulation',
yaxis_title='Mean Time (s)',
legend=dict(x=0.1, y=0.9),
margin=dict(l=50, r=50, t=50, b=50),
width=600,
height=600,
)
# Show figures
fig.show()
fig2.show() |
32 tasks
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Based on reviewer feedback (pyOpenSci/software-submission#173), an idea sprouted to cache event times to avoid recalculation at every step of the shot evolution algorithm. This PR implements that.
The results yield improvements in simulation time for random simulations, using ball number as a parameter for simulation complexity:
The improvement is more dramatic when the number of balls is dramatically increased: