HTTPie (pronounced aitch-tee-tee-pie) is a command-line HTTP client.
Its goal is to make CLI interaction with web services as human-friendly as possible.
HTTPie is designed for testing, debugging, and generally interacting with APIs & HTTP servers.
The http
& https
commands allow for creating and sending arbitrary HTTP requests.
They use simple and natural syntax and provide formatted and colorized output.
Contents
- 1 About this document
- 2 Main features
- 3 Installation
- 4 Usage
- 5 HTTP method
- 6 Request URL
- 7 Request items
- 8 JSON
- 9 Forms
- 10 HTTP headers
- 11 Offline mode
- 12 Cookies
- 13 Authentication
- 14 HTTP redirects
- 15 Proxies
- 16 HTTPS
- 17 Output options
- 18 Raw request body
- 19 Chunked transfer encoding
- 20 Terminal output
- 21 Redirected output
- 22 Download mode
- 23 Streamed responses
- 24 Sessions
- 25 Config
- 26 Scripting
- 27 Meta
This documentation is best viewed at httpie.org/docs.
You can select your corresponding HTTPie version as well as run examples directly from the browser using a termible.io embedded terminal.
If you are reading this on GitHub, then this text covers the current development version. You are invited to submit fixes and improvements to the the docs by editing README.rst.
- Expressive and intuitive syntax
- Formatted and colorized terminal output
- Built-in JSON support
- Forms and file uploads
- HTTPS, proxies, and authentication
- Arbitrary request data
- Custom headers
- Persistent sessions
- Wget-like downloads
- Linux, macOS and Windows support
- Plugins
- Documentation
- Test coverage
On macOS, HTTPie can be installed via Homebrew (recommended):
$ brew install httpie
A MacPorts port is also available:
$ port install httpie
Most Linux distributions provide a package that can be installed using the system package manager, for example:
# Debian, Ubuntu, etc.
$ apt install httpie
# Fedora
$ dnf install httpie
# CentOS, RHEL, ...
$ yum install httpie
# Gentoo
$ emerge httpie
# Arch Linux
$ pacman -S httpie
# Solus
$ eopkg install httpie
A universal installation method (that works on Windows, macOS, Linux, …, and always provides the latest version) is to use pip:
# Make sure we have an up-to-date version of pip and setuptools:
$ python -m pip install --upgrade pip setuptools
$ python -m pip install --upgrade httpie
(If pip
installation fails for some reason, you can try
easy_install httpie
as a fallback.)
Windows users can also install HTTPie with Chocolatey:
$ choco upgrade httpie
Python version 3.6 or greater is required.
You can also install the latest unreleased development version directly from
the master
branch on GitHub. It is a work-in-progress of a future stable
release so the experience might be not as smooth.
On macOS you can install it with Homebrew:
$ brew uninstall --force httpie
$ brew install --HEAD httpie
Otherwise with pip
:
$ python -m pip install --upgrade https://github.com/httpie/httpie/archive/master.tar.gz
Verify that now we have the
current development version identifier
with the -dev
suffix, for example:
$ http --version
# 2.0.0-dev
Hello World:
$ https httpie.io/hello
Synopsis:
$ http [flags] [METHOD] URL [ITEM [ITEM]]
See also http --help
.
Custom HTTP method, HTTP headers and JSON data:
$ http PUT pie.dev/put X-API-Token:123 name=John
Submitting forms:
$ http -f POST pie.dev/post hello=World
See the request that is being sent using one of the output options:
$ http -v pie.dev/get
Build and print a request without sending it using offline mode:
$ http --offline pie.dev/post hello=offline
Use GitHub API to post a comment on an issue with authentication:
$ http -a USERNAME POST https://api.github.com/repos/httpie/httpie/issues/83/comments body='HTTPie is awesome! :heart:'
Upload a file using redirected input:
$ http pie.dev/post < files/data.json
Download a file and save it via redirected output:
$ http pie.dev/image/png > image.png
Download a file wget
style:
$ http --download pie.dev/image/png
Use named sessions to make certain aspects of the communication persistent between requests to the same host:
$ http --session=logged-in -a username:password pie.dev/get API-Key:123
$ http --session=logged-in pie.dev/headers
Set a custom Host
header to work around missing DNS records:
$ http localhost:8000 Host:example.com
The name of the HTTP method comes right before the URL argument:
$ http DELETE pie.dev/delete
Which looks similar to the actual Request-Line
that is sent:
DELETE /delete HTTP/1.1
When the METHOD
argument is omitted from the command, HTTPie defaults to
either GET
(with no request data) or POST
(with request data).
The only information HTTPie needs to perform a request is a URL.
The default scheme is http://
and can be omitted from the argument:
$ http example.org
# => http://example.org
HTTPie also installs an https
executable, where the default
scheme is https://
:
$ https example.org
# => https://example.org
If you find yourself manually constructing URLs with querystring parameters
on the terminal, you may appreciate the param==value
syntax for appending
URL parameters.
With that, you don’t have to worry about escaping the &
separators for your shell. Additionally, any special characters in the
parameter name or value get automatically URL-escaped
(as opposed to parameters specified in the full URL, which HTTPie doesn’t
modify).
$ http https://api.github.com/search/repositories q==httpie per_page==1
GET /search/repositories?q=httpie&per_page=1 HTTP/1.1
Additionally, curl-like shorthand for localhost is supported.
This means that, for example :3000
would expand to http://localhost:3000
If the port is omitted, then port 80 is assumed.
$ http :/foo
GET /foo HTTP/1.1
Host: localhost
$ http :3000/bar
GET /bar HTTP/1.1
Host: localhost:3000
$ http :
GET / HTTP/1.1
Host: localhost
When HTTPie is invoked as https
then the default scheme is https://
($ https example.org
will make a request to https://example.org
).
You can also use the --default-scheme <URL_SCHEME>
option to create
shortcuts for other protocols than HTTP (possibly supported via plugins).
Example for the httpie-unixsocket plugin:
# Before
$ http http+unix://%2Fvar%2Frun%2Fdocker.sock/info
# Create an alias
$ alias http-unix='http --default-scheme="http+unix"'
# Now the scheme can be omitted
$ http-unix %2Fvar%2Frun%2Fdocker.sock/info
The standard behaviour of HTTP clients is to normalize the path portion of URLs by squashing dot segments as a typically filesystem would:
$ http -v example.org/./../../etc/password
GET /etc/password HTTP/1.1
The --path-as-is
option allows you to disable this behavior:
$ http --path-as-is -v example.org/./../../etc/password
GET /../../etc/password HTTP/1.1
There are a few different request item types that provide a convenient mechanism for specifying HTTP headers, simple JSON and form data, files, and URL parameters.
They are key/value pairs specified after the URL. All have in
common that they become part of the actual request that is sent and that
their type is distinguished only by the separator used:
:
, =
, :=
, ==
, @
, =@
, and :=@
. The ones with an
@
expect a file path as value.
Item Type | Description |
---|---|
HTTP Headers
Name:Value |
Arbitrary HTTP header, e.g. X-API-Token:123 . |
URL parameters
name==value |
Appends the given name/value pair as a query
string parameter to the URL.
The == separator is used. |
Data Fields
field=value ,
[email protected] |
Request data fields to be serialized as a JSON
object (default), to be form-encoded
(with --form, -f ), or to be serialized as
multipart/form-data (with --multipart ). |
Raw JSON fields
field:=json ,
field:[email protected] |
Useful when sending JSON and one or
more fields need to be a Boolean , Number ,
nested Object , or an Array , e.g.,
meals:='["ham","spam"]' or pies:=[1,2,3]
(note the quotes). |
Fields upload fields
field@/dir/file
field@file;type=mime |
Only available with --form, -f and
--multipart .
For example screenshot@~/Pictures/img.png , or
'[email protected];type=text/markdown' .
With --form , the presence of a file field
results in a --multipart request. |
Note that the structured data fields aren’t the only way to specify request data: The raw request body section describes mechanisms for passing arbitrary request data.
You can use \
to escape characters that shouldn’t be used as separators
(or parts thereof). For instance, foo\==bar
will become a data key/value
pair (foo=
and bar
) instead of a URL parameter.
Often it is necessary to quote the values, e.g. foo='bar baz'
.
If any of the field names or headers starts with a minus
(e.g., -fieldname
), you need to place all such items after the special
token --
to prevent confusion with --arguments
:
$ http pie.dev/post -- -name-starting-with-dash=foo -Unusual-Header:bar
POST /post HTTP/1.1
-Unusual-Header: bar
Content-Type: application/json
{
"-name-starting-with-dash": "foo"
}
JSON is the lingua franca of modern web services and it is also the implicit content type HTTPie uses by default.
Simple example:
$ http PUT pie.dev/put name=John [email protected]
PUT / HTTP/1.1
Accept: application/json, */*;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: application/json
Host: pie.dev
{
"name": "John",
"email": "[email protected]"
}
If your command includes some data request items, they are serialized as a JSON object by default. HTTPie also automatically sets the following headers, both of which can be overwritten:
Content-Type |
application/json |
Accept |
application/json, */*;q=0.5 |
You can use --json, -j
to explicitly set Accept
to application/json
regardless of whether you are sending data
(it’s a shortcut for setting the header via the usual header notation:
http url Accept:'application/json, */*;q=0.5'
). Additionally,
HTTPie will try to detect JSON responses even when the
Content-Type
is incorrectly text/plain
or unknown.
Non-string JSON fields use the :=
separator, which allows you to embed arbitrary JSON data
into the resulting JSON object. Additionally, text and raw JSON files can also be embedded into
fields using =@
and :=@
:
$ http PUT pie.dev/put \
name=John \ # String (default)
age:=29 \ # Raw JSON — Number
married:=false \ # Raw JSON — Boolean
hobbies:='["http", "pies"]' \ # Raw JSON — Array
favorite:='{"tool": "HTTPie"}' \ # Raw JSON — Object
bookmarks:=@files/data.json \ # Embed JSON file
description=@files/text.txt # Embed text file
PUT /person/1 HTTP/1.1
Accept: application/json, */*;q=0.5
Content-Type: application/json
Host: pie.dev
{
"age": 29,
"hobbies": [
"http",
"pies"
],
"description": "John is a nice guy who likes pies.",
"married": false,
"name": "John",
"favorite": {
"tool": "HTTPie"
},
"bookmarks": {
"HTTPie": "https://httpie.org",
}
}
Please note that with the structured request items data field syntax, commands can quickly become unwieldy when sending complex structures. In such cases, it’s better to pass the full raw JSON data as a raw request body, for example:
$ echo -n '{"hello": "world"}' | http POST pie.dev/post
$ http --raw '{"hello": "world"}' POST pie.dev/post
$ http POST pie.dev/post < files/data.json
Furthermore, the structure syntax only allows you to send an object as the JSON document, but not an array, etc. Here, again, the solution is to use a raw request body.
Submitting forms is very similar to sending JSON requests. Often the only
difference is in adding the --form, -f
option, which ensures that
data fields are serialized as, and Content-Type
is set to,
application/x-www-form-urlencoded; charset=utf-8
. It is possible to make
form data the implicit content type instead of JSON
via the config file.
$ http --form POST pie.dev/post name='John Smith'
POST /post HTTP/1.1
Content-Type: application/x-www-form-urlencoded; charset=utf-8
name=John+Smith
If one or more file fields is present, the serialization and content type is
multipart/form-data
:
$ http -f POST pie.dev/post name='John Smith' cv@~/files/data.xml
The request above is the same as if the following HTML form were submitted:
<form enctype="multipart/form-data" method="post" action="http://example.com/jobs">
<input type="text" name="name" />
<input type="file" name="cv" />
</form>
Please note that @
is used to simulate a file upload form field, whereas
=@
just embeds the file content as a regular text field value.
When uploading files, their content type is inferred from the file name. You can manually override the inferred content type:
$ http -f POST pie.dev/post name='John Smith' cv@'~/files/data.bin;type=application/pdf'
To perform a multipart/form-data
request even without any files, use
--multipart
instead of --form
:
$ http --multipart --offline example.org hello=world
POST / HTTP/1.1
Content-Length: 129
Content-Type: multipart/form-data; boundary=c31279ab254f40aeb06df32b433cbccb
Host: example.org
--c31279ab254f40aeb06df32b433cbccb
Content-Disposition: form-data; name="hello"
world
--c31279ab254f40aeb06df32b433cbccb--
File uploads are always streamed to avoid memory issues with large files.
By default, HTTPie uses a random unique string as the multipart boundary
but you can use --boundary
to specify a custom string instead:
$ http --form --multipart --boundary=xoxo --offline example.org hello=world
POST / HTTP/1.1
Content-Length: 129
Content-Type: multipart/form-data; boundary=xoxo
Host: example.org
--xoxo
Content-Disposition: form-data; name="hello"
world
--xoxo--
If you specify a custom Content-Type
header without including the boundary
bit, HTTPie will add the boundary value (explicitly specified or auto-generated)
to the header automatically:
http --form --multipart --offline example.org hello=world Content-Type:multipart/letter
POST / HTTP/1.1
Content-Length: 129
Content-Type: multipart/letter; boundary=c31279ab254f40aeb06df32b433cbccb
Host: example.org
--c31279ab254f40aeb06df32b433cbccb
Content-Disposition: form-data; name="hello"
world
--c31279ab254f40aeb06df32b433cbccb--
To set custom headers you can use the Header:Value
notation:
$ http pie.dev/headers User-Agent:Bacon/1.0 'Cookie:valued-visitor=yes;foo=bar' \
X-Foo:Bar Referer:https://httpie.org/
GET /headers HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Cookie: valued-visitor=yes;foo=bar
Host: pie.dev
Referer: https://httpie.org/
User-Agent: Bacon/1.0
X-Foo: Bar
There are a couple of default headers that HTTPie sets:
GET / HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
User-Agent: HTTPie/<version>
Host: <taken-from-URL>
Any of these can be overwritten and some of them unset (see below).
To unset a previously specified header
(such a one of the default headers), use Header:
:
$ http pie.dev/headers Accept: User-Agent:
To send a header with an empty value, use Header;
:
$ http pie.dev/headers 'Header;'
The --max-headers=n
options allows you to control the number of headers
HTTPie reads before giving up (the default 0
, i.e., there’s no limit).
$ http --max-headers=100 pie.dev/get
Use --offline
to construct HTTP requests without sending them anywhere.
With --offline
, HTTPie builds a request based on the specified options and arguments, prints it to stdout
,
and then exits. It works completely offline; no network connection is ever made.
This has a number of use cases, including:
Generating API documentation examples that you can copy & paste without sending a request:
$ http --offline POST server.chess/api/games API-Key:ZZZ w=magnus b=hikaru t=180 i=2
$ http --offline MOVE server.chess/api/games/123 API-Key:ZZZ p=b a=R1a3 t=77
Generating raw requests that can be sent with any other client:
# 1. save a raw request to a file:
$ http --offline POST pie.dev/post hello=world > request.http
# 2. send it over the wire with, for example, the fantastic netcat tool:
$ nc pie.dev 80 < request.http
You can also use the --offline
mode for debugging and exploring HTTP and HTTPie, and for “dry runs”.
--offline
has the side-effect of automatically activating --print=HB
, i.e., both the request headers and the body
are printed. You can customize the output with the usual output options, with the exception that there
is not response to be printed. You can use --offline
in combination with all the other options (e.g., --session
).
HTTP clients send cookies to the server as regular HTTP headers. That means,
HTTPie does not offer any special syntax for specifying cookies — the usual
Header:Value
notation is used:
Send a single cookie:
$ http pie.dev/cookies Cookie:sessionid=foo
GET / HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Connection: keep-alive
Cookie: sessionid=foo
Host: pie.dev
User-Agent: HTTPie/0.9.9
Send multiple cookies
(note the header is quoted to prevent the shell from interpreting the ;
):
$ http pie.dev/cookies 'Cookie:sessionid=foo;another-cookie=bar'
GET / HTTP/1.1
Accept: */*
Accept-Encoding: gzip, deflate
Connection: keep-alive
Cookie: sessionid=foo;another-cookie=bar
Host: pie.dev
User-Agent: HTTPie/0.9.9
If you often deal with cookies in your requests, then chances are you’d appreciate the sessions feature.
The currently supported authentication schemes are Basic and Digest (see auth plugins for more). There are two flags that control authentication:
--auth, -a |
Pass a username:password pair as
the argument. Or, if you only specify a username
(-a username ), you’ll be prompted for
the password before the request is sent.
To send an empty password, pass username: .
The username:password@hostname URL syntax is
supported as well (but credentials passed via -a
have higher priority). |
--auth-type, -A |
Specify the auth mechanism. Possible values are
basic , digest , or the name of any auth plugins you have installed. The default value is
basic so it can often be omitted. |
$ http -a username:password pie.dev/basic-auth/username/password
$ http -A digest -a username:password pie.dev/digest-auth/httpie/username/password
$ http -a username pie.dev/basic-auth/username/password
$ http -a username: pie.dev/headers
Authentication information from your ~/.netrc
file is by default honored as well.
For example:
$ cat ~/.netrc
machine pie.dev
login httpie
password test
$ http pie.dev/basic-auth/httpie/test
HTTP/1.1 200 OK
[...]
This can be disabled with the --ignore-netrc
option:
$ http --ignore-netrc pie.dev/basic-auth/httpie/test
HTTP/1.1 401 UNAUTHORIZED
[...]
Additional authentication mechanism can be installed as plugins. They can be found on the Python Package Index. Here’s a few picks:
- httpie-api-auth: ApiAuth
- httpie-aws-auth: AWS / Amazon S3
- httpie-edgegrid: EdgeGrid
- httpie-hmac-auth: HMAC
- httpie-jwt-auth: JWTAuth (JSON Web Tokens)
- httpie-negotiate: SPNEGO (GSS Negotiate)
- httpie-ntlm: NTLM (NT LAN Manager)
- httpie-oauth: OAuth
- requests-hawk: Hawk
By default, HTTP redirects are not followed and only the first response is shown:
$ http pie.dev/redirect/3
To instruct HTTPie to follow the Location
header of 30x
responses
and show the final response instead, use the --follow, -F
option:
$ http --follow pie.dev/redirect/3
With 307 Temporary Redirect
and 308 Permanent Redirect
, the method and the body of the original request
are reused to perform the redirected request. Otherwise, a body-less GET
request is performed.
If you additionally wish to see the intermediary requests/responses,
then use the --all
option as well:
$ http --follow --all pie.dev/redirect/3
To change the default limit of maximum 30
redirects, use the
--max-redirects=<limit>
option:
$ http --follow --all --max-redirects=2 pie.dev/redirect/3
You can specify proxies to be used through the --proxy
argument for each
protocol (which is included in the value in case of redirects across protocols):
$ http --proxy=http:http://10.10.1.10:3128 --proxy=https:https://10.10.1.10:1080 example.org
With Basic authentication:
$ http --proxy=http:http://user:[email protected]:3128 example.org
You can also configure proxies by environment variables ALL_PROXY
,
HTTP_PROXY
and HTTPS_PROXY
, and the underlying Requests library will
pick them up as well. If you want to disable proxies configured through
the environment variables for certain hosts, you can specify them in NO_PROXY
.
In your ~/.bash_profile
:
export HTTP_PROXY=http://10.10.1.10:3128
export HTTPS_PROXY=https://10.10.1.10:1080
export NO_PROXY=localhost,example.com
Usage is the same as for other types of proxies:
$ http --proxy=http:socks5://user:pass@host:port --proxy=https:socks5://user:pass@host:port example.org
To skip the host’s SSL certificate verification, you can pass --verify=no
(default is yes
):
$ http --verify=no https://pie.dev/get
You can also use --verify=<CA_BUNDLE_PATH>
to set a custom CA bundle path:
$ http --verify=/ssl/custom_ca_bundle https://example.org
To use a client side certificate for the SSL communication, you can pass
the path of the cert file with --cert
:
$ http --cert=client.pem https://example.org
If the private key is not contained in the cert file you may pass the
path of the key file with --cert-key
:
$ http --cert=client.crt --cert-key=client.key https://example.org
Use the --ssl=<PROTOCOL>
option to specify the desired protocol version to
use. This will default to SSL v2.3 which will negotiate the highest protocol
that both the server and your installation of OpenSSL support. The available
protocols are
ssl2.3
, ssl3
, tls1
, tls1.1
, tls1.2
, tls1.3
.
(The actually available set of protocols may vary depending on your OpenSSL
installation.)
# Specify the vulnerable SSL v3 protocol to talk to an outdated server:
$ http --ssl=ssl3 https://vulnerable.example.org
You can specify the available ciphers with --ciphers
.
It should be a string in the
OpenSSL cipher list format.
$ http --ciphers=ECDHE-RSA-AES128-GCM-SHA256 https://pie.dev/get
Note: these cipher strings do not change the negotiated version of SSL or TLS, they only affect the list of available cipher suites.
To see the default cipher string, run http --help
and see
the --ciphers
section under SSL.
By default, HTTPie only outputs the final response and the whole response message is printed (headers as well as the body). You can control what should be printed via several options:
--headers, -h |
Only the response headers are printed. |
--body, -b |
Only the response body is printed. |
--verbose, -v |
Print the whole HTTP exchange (request and response).
This option also enables --all (see below). |
--print, -p |
Selects parts of the HTTP exchange. |
--quiet, -q |
Don't print anything to stdout and stderr . |
All the other output options are under the hood just shortcuts for
the more powerful --print, -p
. It accepts a string of characters each
of which represents a specific part of the HTTP exchange:
Character | Stands for |
---|---|
H |
request headers |
B |
request body |
h |
response headers |
b |
response body |
Print request and response headers:
$ http --print=Hh PUT pie.dev/put hello=world
--verbose
can often be useful for debugging the request and generating
documentation examples:
$ http --verbose PUT pie.dev/put hello=world
PUT /put HTTP/1.1
Accept: application/json, */*;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: application/json
Host: pie.dev
User-Agent: HTTPie/0.2.7dev
{
"hello": "world"
}
HTTP/1.1 200 OK
Connection: keep-alive
Content-Length: 477
Content-Type: application/json
Date: Sun, 05 Aug 2012 00:25:23 GMT
Server: gunicorn/0.13.4
{
[…]
}
--quiet
redirects all output that would otherwise go to stdout
and stderr
to /dev/null
(except for errors and warnings).
This doesn’t affect output to a file via --output
or --download
.
# There will be no output:
$ http --quiet pie.dev/post enjoy='the silence'
To see all the HTTP communication, i.e. the final request/response as
well as any possible intermediary requests/responses, use the --all
option. The intermediary HTTP communication include followed redirects
(with --follow
), the first unauthorized request when HTTP digest
authentication is used (--auth=digest
), etc.
# Include all responses that lead to the final one:
$ http --all --follow pie.dev/redirect/3
The intermediary requests/response are by default formatted according to
--print, -p
(and its shortcuts described above). If you’d like to change
that, use the --history-print, -P
option. It takes the same
arguments as --print, -p
but applies to the intermediary requests only.
# Print the intermediary requests/responses differently than the final one:
$ http -A digest -a foo:bar --all -p Hh -P H pie.dev/digest-auth/auth/foo/bar
As an optimization, the response body is downloaded from the server
only if it’s part of the output. This is similar to performing a HEAD
request, except that it applies to any HTTP method you use.
Let’s say that there is an API that returns the whole resource when it is updated, but you are only interested in the response headers to see the status code after an update:
$ http --headers PATCH pie.dev/patch name='New Name'
Since we are only printing the HTTP headers here, the connection to the server is closed as soon as all the response headers have been received. Therefore, bandwidth and time isn’t wasted downloading the body which you don’t care about. The response headers are downloaded always, even if they are not part of the output
In addition to crafting structured JSON and forms requests with the request items syntax, you can provide a raw request body that will be sent without further processing. These two approaches for specifying request data (i.e., structured and raw) cannot be combined.
There’re three methods for passing raw request data: piping via stdin
,
--raw='data'
, and @/file/path
.
The universal method for passing request data is through redirected stdin
(standard input)—piping.
By default, stdin
data is buffered and then with no further processing
used as the request body. If you provide Content-Length
, then the request
body is streamed without buffering. You can also use --chunked
to enable
streaming via chunked transfer encoding.
There are multiple useful ways to use piping:
Redirect from a file:
$ http PUT pie.dev/put X-API-Token:123 < files/data.json
Or the output of another program:
$ grep '401 Unauthorized' /var/log/httpd/error_log | http POST pie.dev/post
You can use echo
for simple data:
$ echo -n '{"name": "John"}' | http PATCH pie.dev/patch X-API-Token:123
You can also use a Bash here string:
$ http pie.dev/post <<<'{"name": "John"}'
You can even pipe web services together using HTTPie:
$ http GET https://api.github.com/repos/httpie/httpie | http POST pie.dev/post
You can use cat
to enter multiline data on the terminal:
$ cat | http POST pie.dev/post
<paste>
^D
$ cat | http POST pie.dev/post Content-Type:text/plain
- buy milk
- call parents
^D
On OS X, you can send the contents of the clipboard with pbpaste
:
$ pbpaste | http PUT pie.dev/put
Passing data through stdin
cannot be combined with data fields specified
on the command line:
$ echo -n 'data' | http POST example.org more=data # This is invalid
To prevent HTTPie from reading stdin
data you can use the
--ignore-stdin
option.
In a situation when piping data via stdin
is not convenient (for example,
when generating API docs examples), you can specify the raw request body via
the --raw
option.
$ http --raw 'Hello, world!' pie.dev/post
$ http --raw '{"name": "John"}' pie.dev/post
An alternative to redirected stdin
is specifying a filename (as
@/path/to/file
) whose content is used as if it came from stdin
.
It has the advantage that the Content-Type
header is automatically set to the appropriate value based on the
filename extension. For example, the following request sends the
verbatim contents of that XML file with Content-Type: application/xml
:
$ http PUT pie.dev/put @files/data.xml
File uploads are always streamed to avoid memory issues with large files.
You can use the --chunked
flag to instruct HTTPie to use
Transfer-Encoding: chunked
:
$ http --chunked PUT pie.dev/put hello=world
$ http --chunked --multipart PUT pie.dev/put hello=world foo@files/data.xml
$ http --chunked pie.dev/post @files/data.xml
$ cat files/data.xml | http --chunked pie.dev/post
HTTPie does several things by default in order to make its terminal output easy to read.
Syntax highlighting is applied to HTTP headers and bodies (where it makes
sense). You can choose your preferred color scheme via the --style
option
if you don’t like the default one. There dozens of styles available, here are just a few special or notable ones:
auto |
Follows your terminal ANSI color styles. This is the default style used by HTTPie. |
default |
Default styles of the underlying Pygments library. Not actually used by default by HTTPie.
You can enable it with --style=default |
monokai |
A popular color scheme. Enable with --style=monokai . |
fruity |
A bold, colorful scheme. Enable with --style=fruity . |
… | See $ http --help for all the possible --style values. |
Also, the following formatting is applied:
- HTTP headers are sorted by name.
- JSON data is indented, sorted by keys, and unicode escapes are converted to the characters they represent.
One of these options can be used to control output processing:
--pretty=all |
Apply both colors and formatting. Default for terminal output. |
--pretty=colors |
Apply colors. |
--pretty=format |
Apply formatting. |
--pretty=none |
Disables output processing. Default for redirected output. |
You can control the applied formatting via the --format-options
option.
The following options are available:
For example, this is how you would disable the default header and JSON key sorting, and specify a custom JSON indent size:
$ http --format-options headers.sort:false,json.sort_keys:false,json.indent:2 pie.dev/get
This is something you will typically store as one of the default options in your
config file. See http --help
for all the available formatting options.
There are also two shortcuts that allow you to quickly disable and re-enable
sorting-related format options (currently it means JSON keys and headers):
--unsorted
and --sorted
.
Binary data is suppressed for terminal output, which makes it safe to perform requests to URLs that send back binary data. Binary data is suppressed also in redirected, but prettified output. The connection is closed as soon as we know that the response body is binary,
$ http pie.dev/bytes/2000
You will nearly instantly see something like this:
HTTP/1.1 200 OK
Content-Type: application/octet-stream
+-----------------------------------------+
| NOTE: binary data not shown in terminal |
+-----------------------------------------+
HTTPie uses a different set of defaults for redirected output than for terminal output. The differences being:
- Formatting and colors aren’t applied (unless
--pretty
is specified). - Only the response body is printed (unless one of the output options is set).
- Also, binary data isn’t suppressed.
The reason is to make piping HTTPie’s output to another programs and downloading files work with no extra flags. Most of the time, only the raw response body is of an interest when the output is redirected.
Download a file:
$ http pie.dev/image/png > image.png
Download an image of Octocat, resize it using ImageMagick, upload it elsewhere:
$ http octodex.github.com/images/original.jpg | convert - -resize 25% - | http example.org/Octocats
Force colorizing and formatting, and show both the request and the response in
less
pager:
$ http --pretty=all --verbose pie.dev/get | less -R
The -R
flag tells less
to interpret color escape sequences included
HTTPie`s output.
You can create a shortcut for invoking HTTPie with colorized and paged output
by adding the following to your ~/.bash_profile
:
function httpless {
# `httpless example.org'
http --pretty=all --print=hb "$@" | less -R;
}
HTTPie features a download mode in which it acts similarly to wget
.
When enabled using the --download, -d
flag, response headers are printed to
the terminal (stderr
), and a progress bar is shown while the response body
is being saved to a file.
$ http --download https://github.com/httpie/httpie/archive/master.tar.gz
HTTP/1.1 200 OK
Content-Disposition: attachment; filename=httpie-master.tar.gz
Content-Length: 257336
Content-Type: application/x-gzip
Downloading 251.30 kB to "httpie-master.tar.gz"
Done. 251.30 kB in 2.73862s (91.76 kB/s)
There are three mutually exclusive ways through which HTTPie determines the output filename (with decreasing priority):
- You can explicitly provide it via
--output, -o
. The file gets overwritten if it already exists (or appended to with--continue, -c
). - The server may specify the filename in the optional
Content-Disposition
response header. Any leading dots are stripped from a server-provided filename. - The last resort HTTPie uses is to generate the filename from a combination
of the request URL and the response
Content-Type
. The initial URL is always used as the basis for the generated filename — even if there has been one or more redirects.
To prevent data loss by overwriting, HTTPie adds a unique numerical suffix to the
filename when necessary (unless specified with --output, -o
).
You can also redirect the response body to another program while the response headers and progress are still shown in the terminal:
$ http -d https://github.com/httpie/httpie/archive/master.tar.gz | tar zxf -
If --output, -o
is specified, you can resume a partial download using the
--continue, -c
option. This only works with servers that support
Range
requests and 206 Partial Content
responses. If the server doesn’t
support that, the whole file will simply be downloaded:
$ http -dco file.zip example.org/file
- The
--download
option only changes how the response body is treated. - You can still set custom headers, use sessions,
--verbose, -v
, etc. --download
always implies--follow
(redirects are followed).--download
also implies--check-status
(error HTTP status will result in a non-zero exist static code).- HTTPie exits with status code
1
(error) if the body hasn’t been fully downloaded. Accept-Encoding
cannot be set with--download
.
Responses are downloaded and printed in chunks which allows for streaming and large file downloads without using too much memory. However, when colors and formatting is applied, the whole response is buffered and only then processed at once.
You can use the --stream, -S
flag to make two things happen:
- The output is flushed in much smaller chunks without any buffering,
which makes HTTPie behave kind of like
tail -f
for URLs. - Streaming becomes enabled even when the output is prettified: It will be applied to each line of the response and flushed immediately. This makes it possible to have a nice output for long-lived requests, such as one to the Twitter streaming API.
Prettified streamed response:
$ http --stream pie.dev/stream/3
Streamed output by small chunks à la tail -f
:
# Send each new line (JSON object) to another URL as soon as it arrives from a streaming API:
$ http --stream pie.dev/stream/3 | while read line; do echo "$line" | http pie.dev/post ; done
By default, every request HTTPie makes is completely independent of any previous ones to the same host.
However, HTTPie also supports persistent
sessions via the --session=SESSION_NAME_OR_PATH
option. In a session,
custom HTTP headers (except for the ones starting with Content-
or If-
),
authentication, and cookies
(manually specified or sent by the server) persist between requests
to the same host.
# Create a new session:
$ http --session=./session.json pie.dev/headers API-Token:123
# Inspect / edit the generated session file:
$ cat session.json
# Re-use the existing session — the API-Token header will be set:
$ http --session=./session.json pie.dev/headers
All session data, including credentials, cookie data, and custom headers are stored in plain text. That means session files can also be created and edited manually in a text editor—they are regular JSON. It also means that they can be read by anyone who has access to the session file.
You can create one or more named session per host. For example, this is how
you can create a new session named user1
for pie.dev
:
$ http --session=user1 -a user1:password pie.dev/get X-Foo:Bar
From now on, you can refer to the session by its name (user1
). When you choose
to use the session again, any previously specified authentication or HTTP headers
will automatically be set:
$ http --session=user1 pie.dev/get
To create or reuse a different session, simple specify a different name:
$ http --session=user2 -a user2:password pie.dev/get X-Bar:Foo
Named sessions’s data is stored in JSON files inside the sessions
subdirectory of the config directory, typically:
~/.config/httpie/sessions/<host>/<name>.json
(%APPDATA%\httpie\sessions\<host>\<name>.json
on Windows).
If you have executed the above commands on a unix machine, you should be able list the generated sessions files using:
$ ls -l ~/.config/httpie/sessions/pie.dev
Instead of a name, you can also directly specify a path to a session file. This allows for sessions to be re-used across multiple hosts:
# Create a session:
$ http --session=/tmp/session.json example.org
# Use the session to make a request to another host:
$ http --session=/tmp/session.json admin.example.org
# You can also refer to a previously created named session:
$ http --session=~/.config/httpie/sessions/another.example.org/test.json example.org
When creating anonymous sessions, please remember to always include at least
one /
, even if the session files is located in the current directory
(i.e., --session=./session.json
instead of just --session=session.json
),
otherwise HTTPie assumes a named session instead.
To use an existing session file without updating it from the request/response
exchange after it has been created, specify the session name via
--session-read-only=SESSION_NAME_OR_PATH
instead.
# If the session file doesn’t exist, then it is created:
$ http --session-read-only=./ro-session.json pie.dev/headers Custom-Header:orig-value
# But it is not updated:
$ http --session-read-only=./ro-session.json pie.dev/headers Custom-Header:new-value
TL;DR: Cookie storage priority: Server response > Command line request > Session file
To set a cookie within a Session there are three options:
- Get a
Set-Cookie
header in a response from a server
$ http --session=./session.json pie.dev/cookie/set?foo=bar
- Set the cookie name and value through the command line as seen in cookies
$ http --session=./session.json pie.dev/headers Cookie:foo=bar
- Manually set cookie parameters in the json file of the session
{
"__meta__": {
"about": "HTTPie session file",
"help": "https://httpie.org/doc#sessions",
"httpie": "2.2.0-dev"
},
"auth": {
"password": null,
"type": null,
"username": null
},
"cookies": {
"foo": {
"expires": null,
"path": "/",
"secure": false,
"value": "bar"
}
}
}
Cookies will be set in the session file with the priority specified above. For example, a cookie
set through the command line will overwrite a cookie of the same name stored
in the session file. If the server returns a Set-Cookie
header with a
cookie of the same name, the returned cookie will overwrite the preexisting cookie.
Expired cookies are never stored. If a cookie in a session file expires, it will be removed before sending a new request. If the server expires an existing cookie, it will also be removed from the session file.
HTTPie uses a simple config.json
file. The file doesn’t exist by default
but you can create it manually.
To see the exact location for your installation, run http --debug
and
look for config_dir
in the output.
The default location of the configuration file on most platforms is
$XDG_CONFIG_HOME/httpie/config.json
(defaulting to
~/.config/httpie/config.json
).
For backwards compatibility, if the directory ~/.httpie
exists,
the configuration file there will be used instead.
On Windows, the config file is located at %APPDATA%\httpie\config.json
.
The config directory can be changed by setting the $HTTPIE_CONFIG_DIR
environment variable:
$ export HTTPIE_CONFIG_DIR=/tmp/httpie
$ http pie.dev/get
Currently HTTPie offers a single configurable option:
An Array
(by default empty) of default options that should be applied to
every invocation of HTTPie.
For instance, you can use this config option to change your default color theme:
$ cat ~/.config/httpie/config.json
{
"default_options": [
"--style=fruity"
]
}
Even though it is technically possible to include there any of HTTPie’s options, it is not recommended to modify the default behaviour in a way that would break your compatibility with the wider world as that can generate a lot of confusion.
Default options from the config file, or specified any other way,
can be unset for a particular invocation via --no-OPTION
arguments passed
on the command line (e.g., --no-style
or --no-session
).
When using HTTPie from shell scripts, it can be handy to set the
--check-status
flag. It instructs HTTPie to exit with an error if the
HTTP status is one of 3xx
, 4xx
, or 5xx
. The exit status will
be 3
(unless --follow
is set), 4
, or 5
,
respectively.
#!/bin/bash
if http --check-status --ignore-stdin --timeout=2.5 HEAD pie.dev/get &> /dev/null; then
echo 'OK!'
else
case $? in
2) echo 'Request timed out!' ;;
3) echo 'Unexpected HTTP 3xx Redirection!' ;;
4) echo 'HTTP 4xx Client Error!' ;;
5) echo 'HTTP 5xx Server Error!' ;;
6) echo 'Exceeded --max-redirects=<n> redirects!' ;;
*) echo 'Other Error!' ;;
esac
fi
The default behaviour of automatically reading stdin
is typically not
desirable during non-interactive invocations. You most likely want to
use the --ignore-stdin
option to disable it.
It is a common gotcha that without this option HTTPie seemingly hangs.
What happens is that when HTTPie is invoked for example from a cron job,
stdin
is not connected to a terminal.
Therefore, rules for redirected input apply, i.e., HTTPie starts to read it
expecting that the request body will be passed through.
And since there’s no data nor EOF
, it will be stuck. So unless you’re
piping some data to HTTPie, this flag should be used in scripts.
Also, it might be good to set a connection --timeout
limit to prevent
your program from hanging if the server never responds.
The syntax of the command arguments closely corresponds to the actual HTTP requests sent over the wire. It has the advantage that it’s easy to remember and read. It is often possible to translate an HTTP request to an HTTPie argument list just by inlining the request elements. For example, compare this HTTP request:
POST /post HTTP/1.1
Host: pie.dev
X-API-Key: 123
User-Agent: Bacon/1.0
Content-Type: application/x-www-form-urlencoded
name=value&name2=value2
with the HTTPie command that sends it:
$ http -f POST pie.dev/post \
X-API-Key:123 \
User-Agent:Bacon/1.0 \
name=value \
name2=value2
Notice that both the order of elements and the syntax is very similar,
and that only a small portion of the command is used to control HTTPie and
doesn’t directly correspond to any part of the request (here it’s only -f
asking HTTPie to send a form request).
The two modes, --pretty=all
(default for terminal) and --pretty=none
(default for redirected output), allow for both user-friendly interactive use
and usage from scripts, where HTTPie serves as a generic HTTP client.
As HTTPie is still under heavy development, the existing command line
syntax and some of the --OPTIONS
may change slightly before
HTTPie reaches its final version 1.0
. All changes are recorded in the
change log.
HTTPie has the following community channels:
- GitHub issues for bug reports and feature requests.
- Discord server to ask questions, discuss features, and for general API development discussion.
- StackOverflow to ask questions (please make sure to use the httpie tag).
- Tweet directly to @httpie.
- You can also tweet directly to @jakubroztocil.
Under the hood, HTTPie uses these two amazing libraries:
HTTPie plays exceptionally well with the following tools:
- http-prompt — interactive shell for HTTPie featuring autocomplete and command syntax highlighting
- jq — CLI JSON processor that works great in conjunction with HTTPie
Helpers to convert from other client tools:
- CurliPie help convert cURL command line to HTTPie command line.
- httpcat — a lower-level sister utility of HTTPie for constructing raw HTTP requests on the command line.
- curl — a "Swiss knife" command line tool and an exceptional library for transferring data with URLs.
See CONTRIBUTING.rst.
See CHANGELOG.
- Logo by Cláudia Delgado.
- Animation by Allen Smith of GitHub.
BSD-3-Clause: LICENSE.
Jakub Roztocil (@jakubroztocil) created HTTPie and these fine people have contributed.