Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Generalize median filter to N dims #21

Merged
merged 3 commits into from
Aug 16, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
42 changes: 21 additions & 21 deletions lib/nx_signal/filters.ex
Original file line number Diff line number Diff line change
Expand Up @@ -5,40 +5,24 @@ defmodule NxSignal.Filters do
import Nx.Defn

@doc ~S"""
Performs a median filter on a rank 1 or rank 2 tensor.
Performs a median filter on a tensor.

## Options

* `:kernel_shape` - the shape of the sliding window.
It must be compatible with the shape of the tensor.
"""
@doc type: :filters
deftransform median(t = %Nx.Tensor{shape: {length}}, opts) do
defn median(t, opts) do
validate_median_opts!(t, opts)
{kernel_length} = opts[:kernel_shape]

median(Nx.reshape(t, {1, length}), kernel_shape: {1, kernel_length})
|> Nx.squeeze()
end

deftransform median(t = %Nx.Tensor{shape: {_h, _w}}, opts) do
validate_median_opts!(t, opts)
median_n(t, opts)
end

deftransform median(_t, _opts),
do: raise(ArgumentError, message: "tensor must be of rank 1 or 2")

defn median_n(t, opts) do
{k0, k1} = opts[:kernel_shape]

idx =
Nx.stack([Nx.iota(t.shape, axis: 0), Nx.iota(t.shape, axis: 1)], axis: -1)
|> Nx.reshape({:auto, 2})
t
|> idx_tensor()
|> Nx.vectorize(:elements)

t
|> Nx.slice([idx[0], idx[1]], [k0, k1])
|> Nx.slice(start_indices(t, idx), kernel_lengths(opts[:kernel_shape]))
|> Nx.median()
|> Nx.devectorize(keep_names: false)
|> Nx.reshape(t.shape)
Expand All @@ -52,4 +36,20 @@ defmodule NxSignal.Filters do
raise ArgumentError, message: "kernel shape must be of the same rank as the tensor"
end
end

deftransformp idx_tensor(t) do
t
|> Nx.axes()
|> Enum.map(&Nx.iota(t.shape, axis: &1))
|> Nx.stack(axis: -1)
|> Nx.reshape({:auto, length(Nx.axes(t))})
end

deftransformp start_indices(t, idx_tensor) do
t
|> Nx.axes()
|> Enum.map(&idx_tensor[&1])
end

deftransformp kernel_lengths(kernel_shape), do: Tuple.to_list(kernel_shape)
end
85 changes: 65 additions & 20 deletions test/nx_signal/filters_test.exs
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,71 @@ defmodule NxSignal.FiltersTest do
assert NxSignal.Filters.median(t, opts) == expected
end

test "performs n-dim median filter" do
t =
Nx.tensor([
[
[31, 11, 17, 13, 1],
[1, 3, 19, 23, 29],
[19, 5, 7, 37, 2]
],
[
[19, 5, 7, 37, 2],
[1, 3, 19, 23, 29],
[31, 11, 17, 13, 1]
],
[
[1, 3, 19, 23, 29],
[31, 11, 17, 13, 1],
[19, 5, 7, 37, 2]
]
])

k1 = {3, 3, 1}
k2 = {3, 3, 3}

expected1 =
Nx.tensor([
[
[19.0, 5.0, 17.0, 23.0, 2.0],
[19.0, 5.0, 17.0, 23.0, 2.0],
[19.0, 5.0, 17.0, 23.0, 2.0]
],
[
[19.0, 5.0, 17.0, 23.0, 2.0],
[19.0, 5.0, 17.0, 23.0, 2.0],
[19.0, 5.0, 17.0, 23.0, 2.0]
],
[
[19.0, 5.0, 17.0, 23.0, 2.0],
[19.0, 5.0, 17.0, 23.0, 2.0],
[19.0, 5.0, 17.0, 23.0, 2.0]
]
])

expected2 =
Nx.tensor([
[
[11.0, 13.0, 17.0, 17.0, 17.0],
[11.0, 13.0, 17.0, 17.0, 17.0],
[11.0, 13.0, 17.0, 17.0, 17.0]
],
[
[11.0, 13.0, 17.0, 17.0, 17.0],
[11.0, 13.0, 17.0, 17.0, 17.0],
[11.0, 13.0, 17.0, 17.0, 17.0]
],
[
[11.0, 13.0, 17.0, 17.0, 17.0],
[11.0, 13.0, 17.0, 17.0, 17.0],
[11.0, 13.0, 17.0, 17.0, 17.0]
]
])

assert NxSignal.Filters.median(t, kernel_shape: k1) == expected1
assert NxSignal.Filters.median(t, kernel_shape: k2) == expected2
end

test "raises if kernel_shape is not compatible" do
t1 = Nx.iota({10})
opts1 = [kernel_shape: {5, 5}]
Expand All @@ -50,25 +115,5 @@ defmodule NxSignal.FiltersTest do
fn -> NxSignal.Filters.median(t2, opts2) end
)
end

test "raises if tensor rank is not 1 or 2" do
t1 = Nx.tensor(1)
opts1 = [kernel_shape: {1}]

assert_raise(
ArgumentError,
"tensor must be of rank 1 or 2",
fn -> NxSignal.Filters.median(t1, opts1) end
)

t2 = Nx.iota({5, 5, 5})
opts2 = [kernel_shape: {3, 3, 3}]

assert_raise(
ArgumentError,
"tensor must be of rank 1 or 2",
fn -> NxSignal.Filters.median(t2, opts2) end
)
end
end
end
Loading