Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Feat: Add jasper #1591

Merged
merged 20 commits into from
Dec 23, 2024
Merged
5 changes: 0 additions & 5 deletions mteb/models/instruct_wrapper.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,9 +77,4 @@ def encode(
embeddings = embeddings.cpu().detach().float().numpy()
return embeddings

def format_instruction(self, instruction: str) -> str:
if isinstance(self.instruction_template, str):
return self.instruction_template.format(instruction=instruction)
return self.instruction_template(instruction)

return InstructWrapper(model_name_or_path, mode, instruction_template, **kwargs)
96 changes: 96 additions & 0 deletions mteb/models/jasper_models.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
from __future__ import annotations

import logging
from collections.abc import Sequence
from functools import partial
from typing import Any, Callable

import numpy as np
import torch
from sentence_transformers import SentenceTransformer

import mteb
from mteb.encoder_interface import PromptType
from mteb.model_meta import ModelMeta

from .wrapper import Wrapper

logger = logging.getLogger(__name__)


class JasperWrapper(Wrapper):
def __init__(
self,
model_name: str,
revision: str,
instruction_template: str | Callable[[str], str] | None = None,
max_seq_length: int = 2048,
**kwargs: Any,
):
self.model_name = model_name
self.model = SentenceTransformer(model_name, revision=revision, **kwargs)
self.instruction_template = instruction_template
self.model.max_seq_length = max_seq_length

def encode(
self,
sentences: Sequence[str],
*,
task_name: str,
prompt_type: PromptType | None = None,
**kwargs: Any,
) -> np.ndarray:
task = mteb.get_task(task_name=task_name)
instruction = self.get_task_instruction(task_name, prompt_type)

# to passage prompts won't be applied to passages
if prompt_type == PromptType.passage and task.metadata.type == "s2p":
Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I've updated it to apply the passage prompt only if the task type is s2s or p2p.

instruction = None

embeddings = self.model.encode(
sentences,
normalize_embeddings=True,
prompt=instruction,
**kwargs,
)

if isinstance(embeddings, torch.Tensor):
# sometimes in kwargs can be return_tensors=True
embeddings = embeddings.cpu().detach().float().numpy()
return embeddings


jasper_en_v1 = ModelMeta(
loader=partial( # type: ignore
JasperWrapper,
model_name="infgrad/jasper_en_vision_language_v1",
revision="d6330ce98f8a0d741e781df845904c9484f00efa",
config_kwargs={"is_text_encoder": True, "vector_dim": 12288},
model_kwargs={
"attn_implementation": "sdpa",
"torch_dtype": torch.float16,
},
trust_remote_code=True,
max_seq_length=2048,
instruction_template="Instruct: {instruction}\nQuery: ",
),
name="infgrad/jasper_en_vision_language_v1",
languages=["eng-Latn"],
open_weights=True,
revision="d6330ce98f8a0d741e781df845904c9484f00efa",
release_date="2024-12-11", # first commit
n_parameters=1_999_000_000,
memory_usage=None,
max_tokens=131072,
embed_dim=8960,
license="apache-2.0",
reference="https://huggingface.co/infgrad/jasper_en_vision_language_v1/tree/main",
similarity_fn_name="cosine",
framework=["Sentence Transformers", "PyTorch"],
use_instructions=True,
adapted_from=None,
superseded_by=None,
training_datasets={
"non_mteb": ["BAAI/Infinity-MM", "HuggingFaceFW/fineweb-edu"],
},
)
8 changes: 8 additions & 0 deletions mteb/models/overview.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
google_models,
gritlm_models,
gte_models,
jasper_models,
jina_models,
linq_models,
llm2vec_models,
Expand Down Expand Up @@ -72,6 +73,13 @@
ru_sentence_models,
salesforce_models,
sentence_transformers_models,
voyage_models,
google_models,
repllama_models,
promptriever_models,
jina_models,
jasper_models,
uae_models,
stella_models,
uae_models,
voyage_models,
Expand Down
21 changes: 20 additions & 1 deletion mteb/models/wrapper.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
from __future__ import annotations

import logging
from typing import get_args
from typing import Callable, get_args

import mteb
from mteb.abstasks.TaskMetadata import TASK_TYPE
Expand All @@ -15,6 +15,8 @@ class Wrapper:
Also contains some utility functions for wrappers for working with prompts and instructions.
"""

instruction_template: str | Callable[[str], str] | None = None

@staticmethod
def get_prompt_name(
task_to_prompt: dict[str, str] | None,
Expand Down Expand Up @@ -100,3 +102,20 @@ def get_instruction(task_name: str, prompt_type: PromptType | None) -> str:
if task_metadata.prompt:
return task_metadata.prompt
return task.abstask_prompt

def format_instruction(self, instruction: str) -> str:
if isinstance(self.instruction_template, str):
if "{instruction}" not in self.instruction_template:
raise ValueError(
"Instruction template must contain the string '{instruction}'."
)
return self.instruction_template.format(instruction=instruction)
return self.instruction_template(instruction)

def get_task_instruction(
self, task_name: str, prompt_type: PromptType | None
) -> str:
instruction = self.get_instruction(task_name, prompt_type)
if self.instruction_template:
return self.format_instruction(instruction)
return instruction
Loading