Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fetch models results from HF #43

Merged
merged 21 commits into from
Nov 15, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
The table of contents is too big for display.
Diff view
Diff view
  •  
  •  
  •  
The diff you're trying to view is too large. We only load the first 3000 changed files.
238 changes: 238 additions & 0 deletions load_external.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,238 @@
from __future__ import annotations

import json
import logging
import math
import re
from pathlib import Path
from typing import Any

from huggingface_hub import HfApi, get_hf_file_metadata, hf_hub_download, hf_hub_url
from huggingface_hub.errors import NotASafetensorsRepoError
from huggingface_hub.hf_api import ModelInfo
from huggingface_hub.repocard import metadata_load
from mteb import ModelMeta, get_task

API = HfApi()
logger = logging.getLogger(__name__)


library_mapping = {
"sentence-transformers": "Sentence Transformers",
}


def get_model_dir(model_id: str) -> Path:
external_result_dir = Path("results") / model_id.replace("/", "__") / "external"
return external_result_dir


def simplify_dataset_name(name: str) -> str:
return name.replace("MTEB ", "").split()[0]


def get_model_parameters_memory(model_info: ModelInfo) -> tuple[int| None, float|None]:
try:
safetensors = API.get_safetensors_metadata(model_info.id)
num_parameters = sum(safetensors.parameter_count.values())
return num_parameters, round(num_parameters * 4 / 1024 ** 3, 2)
except NotASafetensorsRepoError as e:
logger.info(f"Could not find SafeTensors metadata for {model_info.id}")

filenames = [sib.rfilename for sib in model_info.siblings]
if "pytorch_model.bin" in filenames:
url = hf_hub_url(model_info.id, filename="pytorch_model.bin")
meta = get_hf_file_metadata(url)
bytes_per_param = 4
num_params = round(meta.size / bytes_per_param)
size_gb = round(meta.size * (4 / bytes_per_param) / 1024 ** 3, 2)
return num_params, size_gb
if "pytorch_model.bin.index.json" in filenames:
index_path = hf_hub_download(model_info.id, filename="pytorch_model.bin.index.json")
size = json.load(open(index_path))
bytes_per_param = 4
if "metadata" in size and "total_size" in size["metadata"]:
return round(size["metadata"]["total_size"] / bytes_per_param), round(size["metadata"]["total_size"] / 1024 ** 3, 2)
logger.info(f"Could not find the model parameters for {model_info.id}")
return None, None


def get_dim_seq_size(model: ModelInfo) -> tuple[str | None, str | None, int, float]:
siblings = model.siblings or []
filenames = [sib.rfilename for sib in siblings]
dim, seq = None, None
for filename in filenames:
if re.match(r"\d+_Pooling/config.json", filename):
st_config_path = hf_hub_download(model.id, filename=filename)
dim = json.load(open(st_config_path)).get("word_embedding_dimension", None)
break
for filename in filenames:
if re.match(r"\d+_Dense/config.json", filename):
st_config_path = hf_hub_download(model.id, filename=filename)
dim = json.load(open(st_config_path)).get("out_features", dim)
if "config.json" in filenames:
config_path = hf_hub_download(model.id, filename="config.json")
config = json.load(open(config_path))
if not dim:
dim = config.get("hidden_dim", config.get("hidden_size", config.get("d_model", None)))
seq = config.get("n_positions", config.get("max_position_embeddings", config.get("n_ctx", config.get("seq_length", None))))

parameters, memory = get_model_parameters_memory(model)
return dim, seq, parameters, memory


def create_model_meta(model_info: ModelInfo) -> ModelMeta | None:
readme_path = hf_hub_download(model_info.id, filename="README.md", etag_timeout=30)
meta = metadata_load(readme_path)
dim, seq, parameters, memory = None, None, None, None
try:
dim, seq, parameters, memory = get_dim_seq_size(model_info)
except Exception as e:
logger.error(f"Error getting model parameters for {model_info.id}, {e}")

release_date = str(model_info.created_at.date()) if model_info.created_at else ""
library = [library_mapping[model_info.library_name]] if model_info.library_name in library_mapping else []
languages = meta.get("language", [])
if not isinstance(languages, list) and isinstance(languages, str):
languages = [languages]
# yaml transforms norwegian `no` to False
for i in range(len(languages)):
if languages[i] is False:
languages[i] = "no"

model_meta = ModelMeta(
name=model_info.id,
revision=model_info.sha,
release_date=release_date,
open_weights=True,
framework=library,
license=meta.get("license", None),
embed_dim=dim,
max_tokens=seq,
n_parameters=parameters,
languages=languages,
)
return model_meta


def parse_readme(model_info: ModelInfo) -> dict[str, dict[str, Any]] | None:
model_id = model_info.id
try:
readme_path = hf_hub_download(model_info.id, filename="README.md", etag_timeout=30)
except Exception:
logger.warning(f"ERROR: Could not fetch metadata for {model_id}, trying again")
readme_path = hf_hub_download(model_id, filename="README.md", etag_timeout=30)
meta = metadata_load(readme_path)
if "model-index" not in meta:
logger.info(f"Could not find model-index in {model_id}")
return
model_index = meta["model-index"][0]
model_name_from_readme = model_index.get("name", None)
orgs = ["Alibaba-NLP", "HIT-TMG", "McGill-NLP", "Snowflake", "facebook", "jinaai", "nomic-ai"]
is_org = any([model_id.startswith(org) for org in orgs])
# There a lot of reuploads with tunes, quantization, etc. We only want the original model
# to prevent this most of the time we can check if the model name from the readme is the same as the model id
# but some orgs have a different naming in their readme
if model_name_from_readme and not model_info.id.endswith(model_name_from_readme) and not is_org:
logger.warning(f"Model name mismatch: {model_info.id} vs {model_name_from_readme}")
return
results = model_index.get("results", [])
model_results = {}
for result in results:
dataset = result["dataset"]
dataset_type = dataset["type"] # type is repo of the dataset
if dataset_type not in model_results:
output_dict = {
"dataset_revision": dataset.get("revision", ""),
"task_name": simplify_dataset_name(dataset["name"]),
"evaluation_time": None,
"mteb_version": None,
"scores": {},
}
else:
output_dict = model_results[dataset_type]

try:
mteb_task = get_task(output_dict["task_name"])
except Exception:
logger.warning(f"Error getting task for {model_id} {output_dict['task_name']}")
continue

mteb_task_metadata = mteb_task.metadata
mteb_task_eval_languages = mteb_task_metadata.eval_langs

scores_dict = output_dict["scores"]
current_split = dataset["split"]
current_config = dataset.get("config", "")
cur_split_metrics = {
"hf_subset": current_config,
"languages": mteb_task_eval_languages if isinstance(mteb_task_eval_languages, list) else mteb_task_eval_languages.get(current_config, ["None"]),
}
for metric in result["metrics"]:
cur_split_metrics[metric["type"]] = metric["value"]

main_score_str = "main_score"
if main_score_str not in cur_split_metrics:
# old sts and sum_eval have cos_sim_pearson, but in model_meta cosine_spearman is main_score
for old_metric, new_metric in zip(["cos_sim_pearson", "cos_sim_spearman"], ["cosine_pearson", "cosine_spearman"]):
if old_metric in cur_split_metrics:
cur_split_metrics[new_metric] = cur_split_metrics[old_metric]

if mteb_task.metadata.main_score not in cur_split_metrics:
logger.warning(f"Could not find main score for {model_id} {output_dict['task_name']}, mteb task {mteb_task.metadata.name}. Main score: {mteb_task.metadata.main_score}. Metrics: {cur_split_metrics}, result {result['metrics']}")
continue

cur_split_metrics[main_score_str] = cur_split_metrics.get(mteb_task.metadata.main_score, None)
split_metrics = scores_dict.get(current_split, [])
split_metrics.append(cur_split_metrics)
scores_dict[current_split] = split_metrics
model_results[dataset_type] = output_dict
return model_results


def get_mteb_data() -> None:
models = sorted(list(API.list_models(filter="mteb", full=True)), key=lambda x: x.id)
# models = [model for model in models if model.id == "intfloat/multilingual-e5-large"]
for i, model_info in enumerate(models, start=1):
logger.info(f"[{i}/{len(models)}] Processing {model_info.id}")
model_path = get_model_dir(model_info.id)
if (model_path / "model_meta.json").exists() and len(list(model_path.glob("*.json"))) > 1:
logger.info(f"Model meta already exists for {model_info.id}")
continue
if model_info.id.lower().endswith("gguf"):
logger.info(f"Skipping {model_info.id} GGUF model")
continue

spam_users = ["ILKT", "fine-tuned", "mlx-community"]
is_spam = False
for spam_user in spam_users:
if model_info.id.startswith(spam_user):
logger.info(f"Skipping {model_info.id}")
is_spam = True
continue
if is_spam:
continue
model_meta = create_model_meta(model_info)
model_results = parse_readme(model_info)

if not model_meta or not model_results:
logger.warning(f"Could not get model meta or results for {model_info.id}")
continue

if not model_path.exists():
model_path.mkdir(parents=True, exist_ok=True)

model_meta_path = model_path / "model_meta.json"
with model_meta_path.open("w") as f:
json.dump(model_meta.model_dump(), f, indent=4)

for model_result in model_results:
task_name = model_results[model_result]["task_name"]
result_file = model_path / f"{task_name}.json"
with result_file.open("w") as f:
json.dump(model_results[model_result], f, indent=4)


if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
get_mteb_data()
Loading
Loading