Skip to content

emliang/Benchmark-Constrained-Optimization-Problems

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Benchmark-Constrained-Optimization-Problems

Benchmark of Machine Learning for Constrained Optimization Problems

[toc]

Continuous cases included:

  • Quadratic Programming (QP)

$$ \begin{array}{ll} \min & \frac{1}{2}x^TQx + q^Tx\\ \text {s.t.} & Ax = b\\ & Gx \leq h\\ & lb \leq x \leq ub \end{array} $$

  • Second-order Cone Programming (SOCP)

$$ \begin{array}{ll} \min & \frac{1}{2}x^TQx + q^Tx\\ \text {s.t.} & \vert\vert A_ix+b_i\vert\vert_2 \leq {C_i}^Tx+d_i, \quad i=1,...,m\\ & Fx = g\\ & lb \leq x \leq ub \end{array} $$

  • Convex Quadratically Constrained Quadratic Program (Convex-QCQP)

$$ \begin{array}{ll} \min & \frac{1}{2} x^{\mathrm{T}} P_0 x+q_0^{\mathrm{T}} x \\ \text {s.t.} & \frac{1}{2} x^{\mathrm{T}} P_i x+q_i^{\mathrm{T}} x+r_i \leq 0, \quad i=1,..., m, \\ & A x=b\\ & P_i \succeq 0, \quad i=0,...,m\\ & lb \leq x \leq ub \end{array} $$

  • Semidefinite Programming (SDP)

$$ \begin{array}{ll} \min & \textbf{tr}(CX)\\ \text {s.t.} & \textbf{tr}(A_iX) = b_i, \quad i=1,...,p\\ & X \succeq 0\\ & lb \leq X \leq ub \end{array} $$

Combinatorial cases included:

  • Maximum clique

$$ \begin{array}{ll} \max\limits_x ; & \sum_{i\in V}x_i \\ \text{s.t.}; & x_i + x_j \le 1,; \forall (i,j)\in\overline{E} \nonumber\\ & x_i\in{0,1},; \forall i \in V \nonumber \end{array} $$

  • Maximum independent set

$$ \begin{array}{ll} \max\limits_x ; & \sum_{i\in V} x_i, ; \\ \text{s.t.}; & x_i + x_j \le 1,; \forall (i,j)\in {E} \nonumber\\ & x_i\in{0,1},; \forall i \in V \nonumber \end{array} $$

  • Maximum cut

$$ \begin{array}{ll} \max\limits_x & \sum_{(i,j)\in E}\frac{1-x_ix_j}{2};, \\ \text{s.t.}; & x_i\in{-1,1},; \forall i \in V \nonumber \end{array} $$

  • Travel Salesman Problem
  • Vehicle Routing Problem

Engineering cases included:

  • AC Optimal Power Flow (OPF)

$$ \begin{array}{ll} {\min\limits_{p_{g} , q_{g} , v}} \quad & p_{g}^{\rm T} Q p_{g}+b^{\rm T} p_{g} \\ \text{s.t.} \quad & p_{g}^{\min } \leq p_{g} \leq p_{g}^{\max },\\ & q_{g}^{\min } \leq q_{g} \leq q_{g}^{\max }, \\ & v^{\min } \leq|v| \leq v^{\max }, \\ & (p_{g}-p_{d})+(q_{g}-q_{d}) i ={\rm diag}(v) \bar{W} \bar{v}, \quad \forall i \in \mathcal{N} \\ & S_{ij} \le S_{ij}^{\rm max}, \quad \forall (i,j) \in \mathcal{E},\\ \end{array} $$

  • Joint Chance Constraints (JCC) Inventory Management

$$ \begin{array}{ll} \min\limits_{x\in\mathbb{R}^n} \quad & {c}^{\mathsf{T}} {x} \\ \text{s.t.} \quad & {\rm \bf Prob}(A {x} \ge \theta + \omega) \ge 1- \delta \\ & G{x} \le {h},; {x}^{\rm min} \le {x} \le {x}^{\rm max}, \end{array} $$

  • Inverse Kinematics Problem

$$ \begin{array}{ll} \min\limits_{\alpha\in\mathbb{R}^K} \quad & f(\alpha) \\ \text { s.t. } \quad & \sum_{i=1}^k L_i\cos(\sum_{j=1}^i\alpha_j) =x \\ & \sum_{i=1}^k L_i\sin(\sum_{j=1}^i\alpha_j) =y \\ & \alpha_{\rm min} \le \alpha \le \alpha_{\rm max} \end{array} $$

  • Wireless Power Control

$$ \begin{array}{ll} \max\limits_{p\in\mathbb{R}^K} \quad & \sum_{i=1}^K \alpha_i \log \left(1+\frac{\left|h_{i i}\right|^2 p_i}{\sum_{j \neq i}\left|h_{i j}\right|^2 p_j+\sigma_i^2}\right) \\ \text { s.t. } \quad & p^{\min } \leq p \leq p^{\max } \end{array} $$

(back to top)

Contributing

For any suggestions, please fork the repo and create a pull request.
Any contributions are greatly appreciated.

(back to top)

About

Benchmark of Machine Learning for Constrained Optimization Problems

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published