Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix(model): Fix remote embedding model error in some case #587

Merged
merged 1 commit into from
Sep 14, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions pilot/componet.py
Original file line number Diff line number Diff line change
Expand Up @@ -152,6 +152,7 @@ def _build(self):
@self.app.on_event("startup")
async def startup_event():
"""ASGI app startup event handler."""
# TODO catch exception and shutdown if worker manager start failed
asyncio.create_task(self.async_after_start())
self.after_start()

Expand Down
14 changes: 10 additions & 4 deletions pilot/embedding_engine/embedding_factory.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,9 +18,11 @@ def create(


class DefaultEmbeddingFactory(EmbeddingFactory):
def __init__(self, system_app=None, model_name: str = None, **kwargs: Any) -> None:
def __init__(
self, system_app=None, default_model_name: str = None, **kwargs: Any
) -> None:
super().__init__(system_app=system_app)
self._default_model_name = model_name
self._default_model_name = default_model_name
self.kwargs = kwargs

def init_app(self, system_app):
Expand All @@ -31,9 +33,13 @@ def create(
) -> "Embeddings":
if not model_name:
model_name = self._default_model_name

new_kwargs = {k: v for k, v in self.kwargs.items()}
new_kwargs["model_name"] = model_name

if embedding_cls:
return embedding_cls(model_name=model_name, **self.kwargs)
return embedding_cls(**new_kwargs)
else:
from langchain.embeddings import HuggingFaceEmbeddings

return HuggingFaceEmbeddings(model_name=model_name, **self.kwargs)
return HuggingFaceEmbeddings(**new_kwargs)
40 changes: 27 additions & 13 deletions pilot/model/cluster/worker/embedding_worker.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@
import logging
from typing import Dict, List, Type
from typing import Dict, List, Type, Optional

from pilot.configs.model_config import get_device
from pilot.model.loader import _get_model_real_path
Expand Down Expand Up @@ -45,21 +45,12 @@ def parse_parameters(
self, command_args: List[str] = None
) -> EmbeddingModelParameters:
param_cls = self.model_param_class()
model_args = EnvArgumentParser()
env_prefix = EnvArgumentParser.get_env_prefix(self.model_name)
model_params: EmbeddingModelParameters = model_args.parse_args_into_dataclass(
param_cls,
env_prefix=env_prefix,
command_args=command_args,
return _parse_embedding_params(
model_name=self.model_name,
model_path=self.model_path,
command_args=command_args,
param_cls=param_cls,
)
if not model_params.device:
model_params.device = get_device()
logger.info(
f"[EmbeddingsModelWorker] Parameters of device is None, use {model_params.device}"
)
return model_params

def start(
self,
Expand Down Expand Up @@ -100,3 +91,26 @@ def embeddings(self, params: Dict) -> List[List[float]]:
logger.info(f"Receive embeddings request, model: {model}")
input: List[str] = params["input"]
return self._embeddings_impl.embed_documents(input)


def _parse_embedding_params(
model_name: str,
model_path: str,
command_args: List[str] = None,
param_cls: Optional[Type] = EmbeddingModelParameters,
):
model_args = EnvArgumentParser()
env_prefix = EnvArgumentParser.get_env_prefix(model_name)
model_params: EmbeddingModelParameters = model_args.parse_args_into_dataclass(
param_cls,
env_prefix=env_prefix,
command_args=command_args,
model_name=model_name,
model_path=model_path,
)
if not model_params.device:
model_params.device = get_device()
logger.info(
f"[EmbeddingsModelWorker] Parameters of device is None, use {model_params.device}"
)
return model_params
1 change: 1 addition & 0 deletions pilot/model/cluster/worker/manager.py
Original file line number Diff line number Diff line change
Expand Up @@ -635,6 +635,7 @@ def _setup_fastapi(worker_params: ModelWorkerParameters, app=None):

@app.on_event("startup")
async def startup_event():
# TODO catch exception and shutdown if worker manager start failed
asyncio.create_task(worker_manager.start())

@app.on_event("shutdown")
Expand Down
6 changes: 6 additions & 0 deletions pilot/server/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -102,6 +102,12 @@ class WebWerverParameters(BaseParameters):
"help": "Whether to create a publicly shareable link for the interface. Creates an SSH tunnel to make your UI accessible from anywhere. "
},
)
remote_embedding: Optional[bool] = field(
default=False,
metadata={
"help": "Whether to enable remote embedding models. If it is True, you need to start a embedding model through `dbgpt start worker --worker_type text2vec --model_name xxx --model_path xxx`"
},
)
log_level: Optional[str] = field(
default="INFO",
metadata={
Expand Down
56 changes: 50 additions & 6 deletions pilot/server/componet_configs.py
Original file line number Diff line number Diff line change
@@ -1,21 +1,65 @@
from typing import Any, Type, TYPE_CHECKING

from pilot.componet import SystemApp
from pilot.embedding_engine.embedding_factory import EmbeddingFactory
import logging
from pilot.configs.model_config import get_device
from pilot.embedding_engine.embedding_factory import (
EmbeddingFactory,
DefaultEmbeddingFactory,
)
from pilot.server.base import WebWerverParameters
from pilot.utils.parameter_utils import EnvArgumentParser

if TYPE_CHECKING:
from langchain.embeddings.base import Embeddings


def initialize_componets(system_app: SystemApp, embedding_model_name: str):
from pilot.model.cluster import worker_manager
logger = logging.getLogger(__name__)


def initialize_componets(
param: WebWerverParameters,
system_app: SystemApp,
embedding_model_name: str,
embedding_model_path: str,
):
from pilot.model.cluster.controller.controller import controller

system_app.register(
RemoteEmbeddingFactory, worker_manager, model_name=embedding_model_name
)
system_app.register_instance(controller)

_initialize_embedding_model(
param, system_app, embedding_model_name, embedding_model_path
)


def _initialize_embedding_model(
param: WebWerverParameters,
system_app: SystemApp,
embedding_model_name: str,
embedding_model_path: str,
):
from pilot.model.cluster import worker_manager

if param.remote_embedding:
logger.info("Register remote RemoteEmbeddingFactory")
system_app.register(
RemoteEmbeddingFactory, worker_manager, model_name=embedding_model_name
)
else:
from pilot.model.parameter import EmbeddingModelParameters
from pilot.model.cluster.worker.embedding_worker import _parse_embedding_params

model_params: EmbeddingModelParameters = _parse_embedding_params(
model_name=embedding_model_name,
model_path=embedding_model_path,
param_cls=EmbeddingModelParameters,
)
kwargs = model_params.build_kwargs(model_name=embedding_model_path)
logger.info(f"Register local DefaultEmbeddingFactory with kwargs: {kwargs}")
system_app.register(
DefaultEmbeddingFactory, default_model_name=embedding_model_path, **kwargs
)


class RemoteEmbeddingFactory(EmbeddingFactory):
def __init__(
Expand Down
13 changes: 10 additions & 3 deletions pilot/server/dbgpt_server.py
Original file line number Diff line number Diff line change
Expand Up @@ -109,20 +109,27 @@ def initialize_app(param: WebWerverParameters = None, args: List[str] = None):
# Before start
system_app.before_start()

print(param)

embedding_model_name = CFG.EMBEDDING_MODEL
embedding_model_path = EMBEDDING_MODEL_CONFIG[CFG.EMBEDDING_MODEL]

server_init(param, system_app)
model_start_listener = _create_model_start_listener(system_app)
initialize_componets(system_app, CFG.EMBEDDING_MODEL)
initialize_componets(param, system_app, embedding_model_name, embedding_model_path)

model_path = LLM_MODEL_CONFIG[CFG.LLM_MODEL]
if not param.light:
print("Model Unified Deployment Mode!")
if not param.remote_embedding:
embedding_model_name, embedding_model_path = None, None
initialize_worker_manager_in_client(
app=app,
model_name=CFG.LLM_MODEL,
model_path=model_path,
local_port=param.port,
embedding_model_name=CFG.EMBEDDING_MODEL,
embedding_model_path=EMBEDDING_MODEL_CONFIG[CFG.EMBEDDING_MODEL],
embedding_model_name=embedding_model_name,
embedding_model_path=embedding_model_path,
start_listener=model_start_listener,
)

Expand Down