This is the repository containing the code for the paper titled ....
Citation TBD
-
To setup the environment:
conda create --name chorus_wave --file conda_packages.txt && conda activate chorus_wave
Within conda env install the following pip packages:
pip install pip_requirements.txt
-
Download weights for SAM model
wget -P sam https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth
-
Download the data and unzip the files in the
data
folder (For access to the full dataset. For the demo skip steps 3 and 4, and jump straight to step 5.)wget -P data/ http://babeta.ufa.cas.cz/dpisa/down/europlanet/chorus_part1.zip && wget -P data/ http://babeta.ufa.cas.cz/dpisa/down/europlanet/chorus_part2.zip
-
Run data preparation:
python dataprep.py
-
To download the data for demo:
git lfs pull
-
Run the experiments in Jupyter notebooks under
notebooks
├── (data) # Data directory
│ ├── (npy_1) # To include the unzipped data partition 1
│ ├── (npy_2) # To include the unzipped data partition 2
│ ├── (processed) # Directory to contain processed data images and corresponding annotations
│ │ └── (images) # Includes images created from spectrograms using dataprep.py
│ │ └── (masks+) # Includes the positive annotations created using 01-Annotation.ipynb
│ │ │ └── (train) # Train partition
│ │ │ └── (test) # Test partition
├── (notebooks) # jupyter notebooks for various experiments
│ ├── 01-Annotation.ipyn # Annotate the images using SAM box prompt
│ ├── 02-Modelling-baseline-random_sampling.ipynb # Baseline experiments with data sampled randomly
│ ├── 03-Modelling-SAM-distillation.ipynb # Fine tuning SAM via training domain-specific decoder
│ ├── 02-Modelling-Active-Learning.ipynb # Active Learning experiments with various acquisition functions
├── (sam) # To contain the downloaded SAM weights
├── (src) # the main source code directory
│ ├── datasets.py # custom dataset classes and wrappers
│ ├── models.py # custom models for segmentation
│ ├── strategies.py # contains various Active Learning acquisition functions
│ ├── utils.py # misclessaneous helper functions for all experiments
├── codemeta.json # code metadata
├── conda_packages.txt # required conda packages
├── dataprep.py # Python script to convert spectrograms to images and save them for use throughout
├── LICENSE.txt # the full license which this project employs
├── metadata.yml # project metadata
├── pip_requirements.txt # required pip packages
├── README.md # this README file
Europlanet 2024 RI has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149.