Skip to content

Natural Language Understanding Library for Apache Spark.

License

Notifications You must be signed in to change notification settings

eric-valente/spark-nlp

 
 

Repository files navigation

Build Status

Spark-NLP

John Snow Labs Spark-NLP is a natural language processing library built on top of Apache Spark ML. It provides simple, performant & accurate NLP annotations for machine learning pipelines, that scale easily in a distributed environment.

Project's website

Take a look at our official spark-nlp page: http://nlp.johnsnowlabs.com/ for user documentation and examples

Slack community channel

Questions? Feedback? Request access sending an email to [email protected]

Usage

spark-packages

This library has been uploaded to the spark-packages repository https://spark-packages.org/package/JohnSnowLabs/spark-nlp .

To use the most recent version just add the --packages JohnSnowLabs:spark-nlp:1.6.0 to you spark command

spark-shell --packages JohnSnowLabs:spark-nlp:1.6.0
pyspark --packages JohnSnowLabs:spark-nlp:1.6.0
spark-submit --packages JohnSnowLabs:spark-nlp:1.6.0

Jupyter Notebook

export SPARK_HOME=/path/to/your/spark/folder
export PYSPARK_DRIVER_PYTHON=jupyter
export PYSPARK_DRIVER_PYTHON_OPTS=notebook

pyspark --packages JohnSnowLabs:spark-nlp:1.6.0

Apache Zeppelin

This way will work for both Scala and Python

export SPARK_SUBMIT_OPTIONS="--packages JohnSnowLabs:spark-nlp:1.6.0"

Alternatively, add the following Maven Coordinates to the interpreter's library list

com.johnsnowlabs.nlp:spark-nlp_2.11:1.6.0

Python without explicit Spark installation

If you installed pyspark through pip, you can now install sparknlp through pip

pip install --index-url https://test.pypi.org/simple/ spark-nlp==1.6.0

Then you'll have to create a SparkSession manually, for example:

spark = SparkSession.builder \
    .appName("ner")\
    .master("local[4]")\
    .config("spark.driver.memory","4G")\
    .config("spark.driver.maxResultSize", "2G") \
    .config("spark.driver.extraClassPath", "lib/sparknlp.jar")\
    .config("spark.kryoserializer.buffer.max", "500m")\
    .getOrCreate()

Pre-compiled Spark-NLP and Spark-NLP-OCR

You may download fat-jar from here: Spark-NLP 1.6.0 FAT-JAR or non-fat from here Spark-NLP 1.6.0 PKG JAR Spark-NLP-OCR Module (Requires native Tesseract 4.x+ for image based OCR. Does not require Spark-NLP to work but highly suggested) Spark-NLP-OCR 1.6.0 FAT-JAR

Maven central

Our package is deployed to maven central. In order to add this package as a dependency in your application:

Maven

<dependency>
  <groupId>com.johnsnowlabs.nlp</groupId>
  <artifactId>spark-nlp_2.11</artifactId>
  <version>1.6.0</version>
</dependency>

SBT

libraryDependencies += "com.johnsnowlabs.nlp" % "spark-nlp_2.11" % "1.6.0"

If you are using scala 2.11

libraryDependencies += "com.johnsnowlabs.nlp" %% "spark-nlp" % "1.6.0"

Using the jar manually

If for some reason you need to use the jar, you can download the jar from the project's website: http://nlp.johnsnowlabs.com/

From there you can use it in your project setting the --classpath

To add jars to spark programs use the --jars option

spark-shell --jars spark-nlp.jar

The preferred way to use the library when running spark programs is using the --packages option as specified in the spark-packages section.

Contribute

We appreciate any sort of contributions:

  • ideas
  • feedback
  • documentation
  • bug reports
  • nlp training and testing corpora
  • development and testing

Clone the repo and submit your pull-requests! Or directly create issues in this repo.

Contact

[email protected]

John Snow Labs

http://johnsnowlabs.com/

About

Natural Language Understanding Library for Apache Spark.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 77.9%
  • Scala 19.5%
  • Python 2.6%