Skip to content
This repository has been archived by the owner on Jul 16, 2024. It is now read-only.

Test Data (1304_50_2)

magnific0 edited this page Feb 25, 2014 · 1 revision
Trials: 200 - Population size: 50 - Generations: 500
Testing problem: Schwefel, Dimension: 10
With Population Size: 50
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	8.18545231596e-12
    Mean:	441.241139881
    Std:	207.028115277
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	0.0
    Mean:	176.198734226
    Std:	137.979813071
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	0.000227950547924
    Mean:	0.00597766074757
    Std:	0.00714369370629
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	0.0
    Mean:	4.50199877378e-13
    Std:	4.5472461295e-13
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	2.36468622461e-11
    Mean:	2.86944577965e-07
    Std:	2.62553040906e-06
    Algorithm name: Simulated Annealing (Corana's) - iter:25000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.0248405695265
    Mean:	226.957493461
    Std:	153.409697229
    Algorithm name: Improved Harmony Search - iter:25000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	2.0695177227e-05
    Mean:	5.35658185345e-05
    Std:	1.52442347719e-05
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	119.251527112
    Mean:	424.928641147
    Std:	166.966484461
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	991.243826955
    Mean:	1922.33791458
    Std:	256.166801178
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	0.0594396057659
    Mean:	110.556280073
    Std:	73.5434766471
Testing problem: Rastrigin, Dimension: 10
With Population Size: 50
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	0.994959057102
    Mean:	4.43074905617
    Std:	1.78091720878
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	0.0
    Mean:	1.43536041969
    Std:	1.06559953293
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	1.80011241929
    Mean:	5.4299976502
    Std:	1.48027020175
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	0.0
    Mean:	2.1955770535e-14
    Std:	3.64196648559e-14
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	0.0
    Mean:	0.0
    Std:	0.0
    Algorithm name: Simulated Annealing (Corana's) - iter:25000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.029546121725
    Mean:	5.14048348487
    Std:	2.16236371884
    Algorithm name: Improved Harmony Search - iter:25000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	2.44280325035e-06
    Mean:	0.00143762956798
    Std:	0.0167309275399
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	0.0902641087329
    Mean:	0.51430765347
    Std:	0.314535222538
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	0.0
    Mean:	3.20376796233
    Std:	1.52251444757
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	0.000209815040463
    Mean:	0.138942308086
    Std:	0.268358328081
Testing problem: Rosenbrock, Dimension: 10
With Population Size: 50
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	0.00283336905965
    Mean:	3.59992552131
    Std:	1.64783546803
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	0.620918082788
    Mean:	10.4346663577
    Std:	12.3237535609
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	0.292957419495
    Mean:	1.18747602196
    Std:	0.405070682811
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	8.30941279595e-05
    Mean:	2.29931006141
    Std:	1.55614869644
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	4.16977987702
    Mean:	5.61146976203
    Std:	0.326340015614
    Algorithm name: Simulated Annealing (Corana's) - iter:25000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.024036677332
    Mean:	2.08876889397
    Std:	3.94327070651
    Algorithm name: Improved Harmony Search - iter:25000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	5.59518334966
    Mean:	11.3242603906
    Std:	13.5089825269
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	1.36498707032
    Mean:	32.4681644351
    Std:	49.482459537
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	4.32394383674e-29
    Mean:	1.32878750734e-28
    Std:	4.9880726235e-29
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	0.115715223917
    Mean:	1.3188449009
    Std:	0.770891675796
Testing problem: Ackley, Dimension: 10
With Population Size: 50
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	2.50427132364e-08
    Mean:	1.79394275026e-07
    Std:	1.27765601239e-07
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	3.99680288865e-15
    Mean:	9.96319187277e-05
    Std:	0.000994107797716
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	0.000120903029896
    Mean:	0.000384501539769
    Std:	0.000131151011831
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	1.80741199785e-10
    Mean:	8.15204366234e-10
    Std:	3.90565501522e-10
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	3.99680288865e-15
    Mean:	2.36328290271e-12
    Std:	1.72063816678e-11
    Algorithm name: Simulated Annealing (Corana's) - iter:25000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.0221151067267
    Mean:	0.0860092713758
    Std:	0.0285027132312
    Algorithm name: Improved Harmony Search - iter:25000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	0.00064798397175
    Mean:	0.00116421251448
    Std:	0.000185594846695
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	0.102963449809
    Mean:	0.353859526822
    Std:	0.140590232031
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	3.99680288865e-15
    Mean:	1.75859327101e-14
    Std:	5.38589958324e-14
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	7.22506896946e-05
    Mean:	0.00175367860653
    Std:	0.0013132558737
Testing problem: Griewank, Dimension: 10
With Population Size: 50
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	3.10610259735e-09
    Mean:	0.03545310174
    Std:	0.0190560778138
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	0.0
    Mean:	0.0164534305188
    Std:	0.0146211037544
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	0.083354389848
    Mean:	0.221104302686
    Std:	0.0483848358818
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	1.29220079081e-10
    Mean:	0.00112263267391
    Std:	0.00221131245382
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	0.0
    Mean:	1.5782770868e-09
    Std:	1.86386679038e-08
    Algorithm name: Simulated Annealing (Corana's) - iter:25000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	0.0764439252872
    Mean:	0.336331379737
    Std:	0.130620366385
    Algorithm name: Improved Harmony Search - iter:25000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	3.36220431838e-05
    Mean:	0.00899038463572
    Std:	0.00769287479254
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	0.238029207421
    Mean:	0.761524459944
    Std:	0.251766635614
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	0.0
    Mean:	0.00041902690218
    Std:	0.00184628817652
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	6.72652206158e-05
    Mean:	0.0152573594013
    Std:	0.0110521476056
Testing problem: Levy5, Dimension: 10
With Population Size: 50
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	-4341.91799465
    Mean:	-3860.443213
    Std:	352.217379727
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	-4411.52297573
    Mean:	-4284.11082293
    Std:	135.745850021
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	-3708.54697714
    Mean:	-2743.75677591
    Std:	290.796243978
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	-4411.52139799
    Mean:	-4382.02803611
    Std:	27.4261957397
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	-4409.04372996
    Mean:	-4336.04349573
    Std:	49.6402384565
    Algorithm name: Simulated Annealing (Corana's) - iter:25000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	-4253.59554678
    Mean:	-3517.9219475
    Std:	393.968605655
    Algorithm name: Improved Harmony Search - iter:25000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	-4411.48456236
    Mean:	-4354.04831984
    Std:	113.829038214
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	-4242.40903798
    Mean:	-3678.26565052
    Std:	404.121745146
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	-4411.52297573
    Mean:	-3299.08610833
    Std:	569.18386965
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	-4340.87256211
    Mean:	-3941.76800369
    Std:	195.574261348
Testing problem: Cassini 1, Dimension: 6
With Population Size: 50
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	5.10012191283
    Mean:	10.1217611559
    Std:	3.04846242334
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	4.93077996086
    Mean:	11.7553254193
    Std:	3.39588037167
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	5.30345470606
    Mean:	6.39468015875
    Std:	2.25429939222
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	5.30357422756
    Mean:	6.80939692571
    Std:	2.3013483864
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	5.60232064502
    Mean:	8.03530850703
    Std:	2.08001433077
    Algorithm name: Simulated Annealing (Corana's) - iter:25000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	4.98283763134
    Mean:	17.4817537346
    Std:	9.88589638454
    Algorithm name: Improved Harmony Search - iter:25000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	5.33101033288
    Mean:	8.39561985418
    Std:	3.72697573176
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	5.57113539142
    Mean:	19.1473993515
    Std:	10.2013287508
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	10.5408242849
    Mean:	16.0143891179
    Std:	1.66630511677
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	5.82576399743
    Mean:	10.7085554792
    Std:	2.51688144605
Testing problem: GTOC_1, Dimension: 8
With Population Size: 50
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	-1307494.6894
    Mean:	-628257.614647
    Std:	218276.995724
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	-1449719.58208
    Mean:	-729452.418911
    Std:	232983.666964
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	-748945.277413
    Mean:	-350819.361698
    Std:	121434.208603
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	-969557.135918
    Mean:	-508671.749039
    Std:	141474.739699
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	-924661.196419
    Mean:	-552494.476207
    Std:	142148.271093
    Algorithm name: Simulated Annealing (Corana's) - iter:25000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	-1071501.85872
    Mean:	-105712.631631
    Std:	175102.438946
    Algorithm name: Improved Harmony Search - iter:25000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	-1401434.86993
    Mean:	-787658.407352
    Std:	183314.490381
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	-930127.54697
    Mean:	-129611.224606
    Std:	186231.089421
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	-1531113.46856
    Mean:	-151344.195341
    Std:	245118.344612
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	-905056.327177
    Mean:	-358577.002927
    Std:	175740.742849
Testing problem: Cassini 2, Dimension: 22
With Population Size: 50
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	10.8563166107
    Mean:	20.5761898197
    Std:	2.82219302135
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	17.0568767134
    Mean:	23.5748765846
    Std:	2.00910326397
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	19.8367335
    Mean:	27.9405306156
    Std:	2.28412501563
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	15.8277134281
    Mean:	24.0208023419
    Std:	2.50626435803
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	14.6012712458
    Mean:	22.262307354
    Std:	2.67823728143
    Algorithm name: Simulated Annealing (Corana's) - iter:25000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	9.56066954748
    Mean:	23.7508435899
    Std:	6.25755720594
    Algorithm name: Improved Harmony Search - iter:25000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	13.5113967182
    Mean:	24.0341881142
    Std:	3.52306897202
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	15.5284010844
    Mean:	28.2534881008
    Std:	5.34980388354
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	14.2726343379
    Mean:	21.0909304741
    Std:	2.52375520857
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	15.2249252953
    Mean:	24.6420615906
    Std:	3.37730624402
Testing problem: Messenger full, Dimension: 26
With Population Size: 50
    Algorithm name: Particle Swarm optimization - gen:500 omega:0.7298 eta1:2.05 eta2:2.05 variant:5 topology:2 topology param.:4 
    Best:	9.8050226739
    Mean:	17.4574244123
    Std:	2.25594518732
    Algorithm name: MDE_pBX - gen:500 q percentage:0.15 power mean exponent:1.5 ftol:1e-30 xtol:1e-30
    Best:	14.080417822
    Mean:	17.3503409285
    Std:	1.87630951598
    Algorithm name: Differential Evolution - gen:500 F: 0.8 CR: 0.9 variant:2 ftol:1e-30 xtol:1e-30
    Best:	16.3456016887
    Mean:	27.8112356076
    Std:	3.29023016907
    Algorithm name: jDE - gen:500 variant:2 self_adaptation:1 memory:0 ftol:1e-30 xtol:1e-30
    Best:	15.0354491116
    Mean:	23.959011312
    Std:	2.76710586207
    Algorithm name: DE - 1220 - gen:500 self_adaptation:1 variants:[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] memory:0 ftol:1e-30 xtol:1e-30
    Best:	10.92461888
    Mean:	22.3185680192
    Std:	3.03817567545
    Algorithm name: Simulated Annealing (Corana's) - iter:25000 Ts:1 Tf:0.01 steps:1 bin_size:20 range:1 
    Best:	5.88397368957
    Mean:	21.232946987
    Std:	7.19911917943
    Algorithm name: Improved Harmony Search - iter:25000 phmcr:0.85 ppar_min:0.35 ppar_max:0.99 bw_min:1e-05 bw_max:1 
    Best:	15.7754185485
    Mean:	21.6182299787
    Std:	3.05732371983
    Algorithm name: A Simple Genetic Algorithm - gen:500 CR:0.95 M:0.02 elitism:1 mutation:GAUSSIAN (0.1) selection:ROULETTE crossover:EXPONENTIAL 
    Best:	12.6919450296
    Mean:	25.6734619829
    Std:	6.95456312657
    Algorithm name: CMAES - gen:500 cc:-1 cs:-1 c1:-1 cmu:-1 sigma0:0.5 ftol:1e-30 xtol:1e-30 memory:0
    Best:	11.8129964274
    Mean:	15.4799135715
    Std:	1.55850155068
    Algorithm name: Artificial Bee Colony optimization - gen:250 limit:20 
    Best:	17.1863463429
    Mean:	26.7273458823
 Std:	3.7406610432
Clone this wiki locally