Releases
2.10.0
Highlights
Add foundational models: ChornosModel
, ChronosBoltModel
, TimesFMModel
Add ability to handle missing values by adding parameter missing_mode
into metrics
Optimize memory usage in TFTNativeModel
, DeepStateModel
, DeepARNativeModel
Fix working with NaN target in MeanEncoderTransform
Fix target
leakage in MeanSegmentEncoderTransform
Add handling scikit-learn version >= 1.4 in OneHotEncoderTransform
and HierarchicalClustering
Full changelog
Added
Add load_dataset
to public API (#484 )
Add example of using custom pipeline pools in Auto
(#504 )
Add MetricWithMissingHandling
base class, change signature of etna.metrics.Metric
to return None
values (#514 )
Add ChronosModel
(#511 )
Add ChronosBoltModel
(#511 )
Add usage example of ChronosModel
and ChronosBoltModel
in 202-NN_examples
notebook (#511 )
Add TimesFMModel
(#544 )
Add usage example of TimesFMModel
in 202-NN_examples
notebook (#544 )
Add MissingCounter
metric (#520 )
Changed
Add docstring warning about handling non-regressors (including target) to children of WindowStatisticsTransform
(#474 )
Add parameter missing_mode
into MSE
metric (#515 )
Add parameter missing_mode
into MAE
metric (#523 )
Add parameter missing_mode
into MAPE
and SMAPE
metrics (#524 )
Add parameter missing_mode
into Sign
, WAPE
and MaxDeviation
metrics (#530 )
Add parameter missing_mode
into Coverage
and Width
metrics (#541 )
Update aggregate_metrics_df
to work with None
values (#522 )
Rework validation of FoldMask
to not fail on tail nans (#536 )
Add parameter missing_mode
into R2
and MedAE
metrics (#537 )
Update analysis.forecast.plots.plot_metric_per_segment
to handle None
from metrics (#540 )
Add parameter missing_mode
into RMSE
and MSLE
metrics (#542 )
Update analysis.forecast.plots.metric_per_segment_distribution_plot
to handle None
from metrics (#543 )
Add example on using custom params_to_tune
in Tune
(#547 )
Fixed
Fix working with embedding_sizes
in 202-NN_examples
notebook (#489 )
Disallow dropping target in TSDataset.drop_features
(#491 )
Optimize memory usage in TFTNativeModel
by eliminating copying during making samples (#494 )
Optimize memory usage in DeepStateModel
and DeepARNativeModel
by eliminating copying during making samples (#499 )
Fix working with NaN target in MeanEncoderTransform
(#492 )
Fix target
leakage in MeanSegmentEncoderTransform
(#503 )
Add handling scikit-learn version >= 1.4 in OneHotEncoderTransform
and HierarchicalClustering
(#529 )
You can’t perform that action at this time.