Skip to content

Commit

Permalink
Add sieve exercise (#319)
Browse files Browse the repository at this point in the history
  • Loading branch information
glennj authored Dec 8, 2024
1 parent 7ddad19 commit 0e543cf
Show file tree
Hide file tree
Showing 9 changed files with 308 additions and 0 deletions.
8 changes: 8 additions & 0 deletions config.json
Original file line number Diff line number Diff line change
Expand Up @@ -600,6 +600,14 @@
"practices": [],
"prerequisites": [],
"difficulty": 5
},
{
"slug": "sieve",
"name": "Sieve",
"uuid": "f0274c1a-f0dc-4aa5-8517-3afd27c65fe8",
"practices": [],
"prerequisites": [],
"difficulty": 4
}
],
"foregone": [
Expand Down
42 changes: 42 additions & 0 deletions exercises/practice/sieve/.docs/instructions.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,42 @@
# Instructions

Your task is to create a program that implements the Sieve of Eratosthenes algorithm to find all prime numbers less than or equal to a given number.

A prime number is a number larger than 1 that is only divisible by 1 and itself.
For example, 2, 3, 5, 7, 11, and 13 are prime numbers.
By contrast, 6 is _not_ a prime number as it not only divisible by 1 and itself, but also by 2 and 3.

To use the Sieve of Eratosthenes, you first create a list of all the numbers between 2 and your given number.
Then you repeat the following steps:

1. Find the next unmarked number in your list (skipping over marked numbers).
This is a prime number.
2. Mark all the multiples of that prime number as **not** prime.

You keep repeating these steps until you've gone through every number in your list.
At the end, all the unmarked numbers are prime.

~~~~exercism/note
The tests don't check that you've implemented the algorithm, only that you've come up with the correct list of primes.
To check you are implementing the Sieve correctly, a good first test is to check that you do not use division or remainder operations.
~~~~

## Example

Let's say you're finding the primes less than or equal to 10.

- List out 2, 3, 4, 5, 6, 7, 8, 9, 10, leaving them all unmarked.
- 2 is unmarked and is therefore a prime.
Mark 4, 6, 8 and 10 as "not prime".
- 3 is unmarked and is therefore a prime.
Mark 6 and 9 as not prime _(marking 6 is optional - as it's already been marked)_.
- 4 is marked as "not prime", so we skip over it.
- 5 is unmarked and is therefore a prime.
Mark 10 as not prime _(optional - as it's already been marked)_.
- 6 is marked as "not prime", so we skip over it.
- 7 is unmarked and is therefore a prime.
- 8 is marked as "not prime", so we skip over it.
- 9 is marked as "not prime", so we skip over it.
- 10 is marked as "not prime", so we stop as there are no more numbers to check.

You've examined all numbers and found 2, 3, 5, and 7 are still unmarked, which means they're the primes less than or equal to 10.
7 changes: 7 additions & 0 deletions exercises/practice/sieve/.docs/introduction.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
# Introduction

You bought a big box of random computer parts at a garage sale.
You've started putting the parts together to build custom computers.

You want to test the performance of different combinations of parts, and decide to create your own benchmarking program to see how your computers compare.
You choose the famous "Sieve of Eratosthenes" algorithm, an ancient algorithm, but one that should push your computers to the limits.
19 changes: 19 additions & 0 deletions exercises/practice/sieve/.meta/config.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
{
"authors": [
"glennj"
],
"files": {
"solution": [
"sieve.sml"
],
"test": [
"test.sml"
],
"example": [
".meta/example.sml"
]
},
"blurb": "Use the Sieve of Eratosthenes to find all the primes from 2 up to a given number.",
"source": "Sieve of Eratosthenes at Wikipedia",
"source_url": "https://en.wikipedia.org/wiki/Sieve_of_Eratosthenes"
}
20 changes: 20 additions & 0 deletions exercises/practice/sieve/.meta/example.sml
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
fun primes (limit: int): int list =
let val marks = Array.array (limit + 1, true)

fun markMultiples prev =
case Array.findi (fn (i, isPrime) => i > prev andalso isPrime) marks
of NONE => ()
| SOME (prime, _) => (doMark prime (2 * prime); markMultiples prime)

and doMark p m =
if m > limit then ()
else (Array.update (marks, m, false); doMark p (m + p))

in Array.update (marks, 0, false);
Array.update (marks, 1, false);
markMultiples 1;
Array.foldri
(fn (i, isPrime, ps) => if isPrime then i :: ps else ps)
[]
marks
end
25 changes: 25 additions & 0 deletions exercises/practice/sieve/.meta/tests.toml
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
# This is an auto-generated file.
#
# Regenerating this file via `configlet sync` will:
# - Recreate every `description` key/value pair
# - Recreate every `reimplements` key/value pair, where they exist in problem-specifications
# - Remove any `include = true` key/value pair (an omitted `include` key implies inclusion)
# - Preserve any other key/value pair
#
# As user-added comments (using the # character) will be removed when this file
# is regenerated, comments can be added via a `comment` key.

[88529125-c4ce-43cc-bb36-1eb4ddd7b44f]
description = "no primes under two"

[4afe9474-c705-4477-9923-840e1024cc2b]
description = "find first prime"

[974945d8-8cd9-4f00-9463-7d813c7f17b7]
description = "find primes up to 10"

[2e2417b7-3f3a-452a-8594-b9af08af6d82]
description = "limit is prime"

[92102a05-4c7c-47de-9ed0-b7d5fcd00f21]
description = "find primes up to 1000"
2 changes: 2 additions & 0 deletions exercises/practice/sieve/sieve.sml
Original file line number Diff line number Diff line change
@@ -0,0 +1,2 @@
fun primes (limit: int): int list =
raise Fail "'primes' is not implemented"
25 changes: 25 additions & 0 deletions exercises/practice/sieve/test.sml
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
use "testlib.sml";
use "sieve.sml";

infixr |>
fun x |> f = f x

val testsuite =
describe "sieve" [
test "no primes under two"
(fn _ => primes 1 |> Expect.equalTo []),

test "find first prime"
(fn _ => primes 2 |> Expect.equalTo [2]),

test "find primes up to 10"
(fn _ => primes 10 |> Expect.equalTo [2, 3, 5, 7]),

test "limit is prime"
(fn _ => primes 13 |> Expect.equalTo [2, 3, 5, 7, 11, 13]),

test "find primes up to 1000"
(fn _ => primes 1000 |> Expect.equalTo [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997])
]

val _ = Test.run testsuite
160 changes: 160 additions & 0 deletions exercises/practice/sieve/testlib.sml
Original file line number Diff line number Diff line change
@@ -0,0 +1,160 @@
structure Expect =
struct
datatype expectation = Pass | Fail of string * string

local
fun failEq b a =
Fail ("Expected: " ^ b, "Got: " ^ a)

fun failExn b a =
Fail ("Expected: " ^ b, "Raised: " ^ a)

fun exnName (e: exn): string = General.exnName e
in
fun truthy a =
if a
then Pass
else failEq "true" "false"

fun falsy a =
if a
then failEq "false" "true"
else Pass

fun equalTo b a =
if a = b
then Pass
else failEq (PolyML.makestring b) (PolyML.makestring a)

fun nearTo delta b a =
if Real.abs (a - b) <= delta * Real.abs a orelse
Real.abs (a - b) <= delta * Real.abs b
then Pass
else failEq (Real.toString b ^ " +/- " ^ Real.toString delta) (Real.toString a)

fun anyError f =
(
f ();
failExn "an exception" "Nothing"
) handle _ => Pass

fun error e f =
(
f ();
failExn (exnName e) "Nothing"
) handle e' => if exnMessage e' = exnMessage e
then Pass
else failExn (exnMessage e) (exnMessage e')
end
end

structure TermColor =
struct
datatype color = Red | Green | Yellow | Normal

fun f Red = "\027[31m"
| f Green = "\027[32m"
| f Yellow = "\027[33m"
| f Normal = "\027[0m"

fun colorize color s = (f color) ^ s ^ (f Normal)

val redit = colorize Red

val greenit = colorize Green

val yellowit = colorize Yellow
end

structure Test =
struct
datatype testnode = TestGroup of string * testnode list
| Test of string * (unit -> Expect.expectation)

local
datatype evaluation = Success of string
| Failure of string * string * string
| Error of string * string

fun indent n s = (implode (List.tabulate (n, fn _ => #" "))) ^ s

fun fmt indentlvl ev =
let
val check = TermColor.greenit "\226\156\148 " (**)
val cross = TermColor.redit "\226\156\150 " (**)
val indentlvl = indentlvl * 2
in
case ev of
Success descr => indent indentlvl (check ^ descr)
| Failure (descr, exp, got) =>
String.concatWith "\n" [indent indentlvl (cross ^ descr),
indent (indentlvl + 2) exp,
indent (indentlvl + 2) got]
| Error (descr, reason) =>
String.concatWith "\n" [indent indentlvl (cross ^ descr),
indent (indentlvl + 2) (TermColor.redit reason)]
end

fun eval (TestGroup _) = raise Fail "Only a 'Test' can be evaluated"
| eval (Test (descr, thunk)) =
(
case thunk () of
Expect.Pass => ((1, 0, 0), Success descr)
| Expect.Fail (s, s') => ((0, 1, 0), Failure (descr, s, s'))
)
handle e => ((0, 0, 1), Error (descr, "Unexpected error: " ^ exnMessage e))

fun flatten depth testnode =
let
fun sum (x, y, z) (a, b, c) = (x + a, y + b, z + c)

fun aux (t, (counter, acc)) =
let
val (counter', texts) = flatten (depth + 1) t
in
(sum counter' counter, texts :: acc)
end
in
case testnode of
TestGroup (descr, ts) =>
let
val (counter, texts) = foldr aux ((0, 0, 0), []) ts
in
(counter, (indent (depth * 2) descr) :: List.concat texts)
end
| Test _ =>
let
val (counter, evaluation) = eval testnode
in
(counter, [fmt depth evaluation])
end
end

fun println s = print (s ^ "\n")
in
fun run suite =
let
val ((succeeded, failed, errored), texts) = flatten 0 suite

val summary = String.concatWith ", " [
TermColor.greenit ((Int.toString succeeded) ^ " passed"),
TermColor.redit ((Int.toString failed) ^ " failed"),
TermColor.redit ((Int.toString errored) ^ " errored"),
(Int.toString (succeeded + failed + errored)) ^ " total"
]

val status = if failed = 0 andalso errored = 0
then OS.Process.success
else OS.Process.failure

in
List.app println texts;
println "";
println ("Tests: " ^ summary);
OS.Process.exit status
end
end
end

fun describe description tests = Test.TestGroup (description, tests)
fun test description thunk = Test.Test (description, thunk)

0 comments on commit 0e543cf

Please sign in to comment.