-
-
Notifications
You must be signed in to change notification settings - Fork 94
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Add support for Mistral-7B. * Fix prompt replacement. * Update spacy_llm/models/hf/mistral.py
- Loading branch information
Showing
4 changed files
with
169 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,99 @@ | ||
from typing import Any, Callable, Dict, Iterable, Optional, Tuple | ||
|
||
from confection import SimpleFrozenDict | ||
|
||
from ...compat import Literal, transformers | ||
from ...registry.util import registry | ||
from .base import HuggingFace | ||
|
||
|
||
class Mistral(HuggingFace): | ||
MODEL_NAMES = Literal["Mistral-7B-v0.1", "Mistral-7B-Instruct-v0.1"] # noqa: F722 | ||
|
||
def __init__( | ||
self, | ||
name: MODEL_NAMES, | ||
config_init: Optional[Dict[str, Any]], | ||
config_run: Optional[Dict[str, Any]], | ||
): | ||
self._tokenizer: Optional["transformers.AutoTokenizer"] = None | ||
self._device: Optional[str] = None | ||
self._is_instruct = "instruct" in name | ||
super().__init__(name=name, config_init=config_init, config_run=config_run) | ||
|
||
assert isinstance(self._tokenizer, transformers.PreTrainedTokenizerBase) | ||
|
||
# Instantiate GenerationConfig object from config dict. | ||
self._hf_config_run = transformers.GenerationConfig.from_pretrained( | ||
self._name, **self._config_run | ||
) | ||
# To avoid deprecation warning regarding usage of `max_length`. | ||
self._hf_config_run.max_new_tokens = self._hf_config_run.max_length | ||
|
||
def init_model(self) -> Any: | ||
self._tokenizer = transformers.AutoTokenizer.from_pretrained(self._name) | ||
init_cfg = self._config_init | ||
if "device" in init_cfg: | ||
self._device = init_cfg.pop("device") | ||
|
||
model = transformers.AutoModelForCausalLM.from_pretrained( | ||
self._name, **init_cfg, resume_download=True | ||
) | ||
if self._device: | ||
model.to(self._device) | ||
|
||
return model | ||
|
||
@property | ||
def hf_account(self) -> str: | ||
return "mistralai" | ||
|
||
def __call__(self, prompts: Iterable[str]) -> Iterable[str]: # type: ignore[override] | ||
assert callable(self._tokenizer) | ||
assert hasattr(self._model, "generate") | ||
assert hasattr(self._tokenizer, "batch_decode") | ||
prompts = list(prompts) | ||
|
||
tokenized_input_ids = [ | ||
self._tokenizer( | ||
prompt if not self._is_instruct else f"<s>[INST] {prompt} [/INST]", | ||
return_tensors="pt", | ||
).input_ids | ||
for prompt in prompts | ||
] | ||
if self._device: | ||
tokenized_input_ids = [tp.to(self._device) for tp in tokenized_input_ids] | ||
|
||
return [ | ||
self._tokenizer.decode( | ||
self._model.generate( | ||
input_ids=tok_ii, generation_config=self._hf_config_run | ||
)[:, tok_ii.shape[1] :][0], | ||
skip_special_tokens=True, | ||
) | ||
for tok_ii in tokenized_input_ids | ||
] | ||
|
||
@staticmethod | ||
def compile_default_configs() -> Tuple[Dict[str, Any], Dict[str, Any]]: | ||
default_cfg_init, default_cfg_run = HuggingFace.compile_default_configs() | ||
return ( | ||
default_cfg_init, | ||
default_cfg_run, | ||
) | ||
|
||
|
||
@registry.llm_models("spacy.Mistral.v1") | ||
def mistral_hf( | ||
name: Mistral.MODEL_NAMES, | ||
config_init: Optional[Dict[str, Any]] = SimpleFrozenDict(), | ||
config_run: Optional[Dict[str, Any]] = SimpleFrozenDict(), | ||
) -> Callable[[Iterable[str]], Iterable[str]]: | ||
"""Generates Mistral instance that can execute a set of prompts and return the raw responses. | ||
name (Literal): Name of the Falcon model. Has to be one of Falcon.get_model_names(). | ||
config_init (Optional[Dict[str, Any]]): HF config for initializing the model. | ||
config_run (Optional[Dict[str, Any]]): HF config for running the model. | ||
RETURNS (Callable[[Iterable[str]], Iterable[str]]): Falcon instance that can execute a set of prompts and return | ||
the raw responses. | ||
""" | ||
return Mistral(name=name, config_init=config_init, config_run=config_run) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,67 @@ | ||
import copy | ||
|
||
import pytest | ||
import spacy | ||
from confection import Config # type: ignore[import] | ||
from thinc.compat import has_torch_cuda_gpu | ||
|
||
from ...compat import torch | ||
|
||
_PIPE_CFG = { | ||
"model": { | ||
"@llm_models": "spacy.Mistral.v1", | ||
"name": "Mistral-7B-v0.1", | ||
}, | ||
"task": {"@llm_tasks": "spacy.NoOp.v1"}, | ||
} | ||
|
||
_NLP_CONFIG = """ | ||
[nlp] | ||
lang = "en" | ||
pipeline = ["llm"] | ||
batch_size = 128 | ||
[components] | ||
[components.llm] | ||
factory = "llm" | ||
[components.llm.task] | ||
@llm_tasks = "spacy.NoOp.v1" | ||
[components.llm.model] | ||
@llm_models = "spacy.Mistral.v1" | ||
name = "Mistral-7B-v0.1" | ||
""" | ||
|
||
|
||
@pytest.mark.gpu | ||
@pytest.mark.skipif(not has_torch_cuda_gpu, reason="needs GPU & CUDA") | ||
def test_init(): | ||
"""Test initialization and simple run.""" | ||
nlp = spacy.blank("en") | ||
cfg = copy.deepcopy(_PIPE_CFG) | ||
nlp.add_pipe("llm", config=cfg) | ||
nlp("This is a test.") | ||
torch.cuda.empty_cache() | ||
|
||
|
||
@pytest.mark.gpu | ||
@pytest.mark.skipif(not has_torch_cuda_gpu, reason="needs GPU & CUDA") | ||
def test_init_from_config(): | ||
orig_config = Config().from_str(_NLP_CONFIG) | ||
nlp = spacy.util.load_model_from_config(orig_config, auto_fill=True) | ||
assert nlp.pipe_names == ["llm"] | ||
torch.cuda.empty_cache() | ||
|
||
|
||
@pytest.mark.gpu | ||
@pytest.mark.skipif(not has_torch_cuda_gpu, reason="needs GPU & CUDA") | ||
def test_invalid_model(): | ||
orig_config = Config().from_str(_NLP_CONFIG) | ||
config = copy.deepcopy(orig_config) | ||
config["components"]["llm"]["model"]["name"] = "x" | ||
with pytest.raises(ValueError, match="unexpected value; permitted"): | ||
spacy.util.load_model_from_config(config, auto_fill=True) | ||
torch.cuda.empty_cache() |