Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add support for Mistral 7B #313

Merged
merged 4 commits into from
Oct 5, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion requirements-dev.txt
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ langchain==0.0.249; python_version>="3.9"
openai>=0.27; python_version>="3.9"

# Necessary for running all local models on GPU.
transformers[sentencepiece]>=4.0.0,<4.30
transformers[sentencepiece]>=4.0.0
torch
einops>=0.4

Expand Down
2 changes: 2 additions & 0 deletions spacy_llm/models/hf/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@
from .dolly import dolly_hf
from .falcon import falcon_hf
from .llama2 import llama2_hf
from .mistral import mistral_hf
from .openllama import openllama_hf
from .stablelm import stablelm_hf

Expand All @@ -10,6 +11,7 @@
"dolly_hf",
"falcon_hf",
"llama2_hf",
"mistral_hf",
"openllama_hf",
"stablelm_hf",
]
99 changes: 99 additions & 0 deletions spacy_llm/models/hf/mistral.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
from typing import Any, Callable, Dict, Iterable, Optional, Tuple

from confection import SimpleFrozenDict

from ...compat import Literal, transformers
from ...registry.util import registry
from .base import HuggingFace


class Mistral(HuggingFace):
MODEL_NAMES = Literal["Mistral-7B-v0.1", "Mistral-7B-Instruct-v0.1"] # noqa: F722

def __init__(
self,
name: MODEL_NAMES,
config_init: Optional[Dict[str, Any]],
config_run: Optional[Dict[str, Any]],
):
self._tokenizer: Optional["transformers.AutoTokenizer"] = None
self._device: Optional[str] = None
self._is_instruct = "instruct" in name
super().__init__(name=name, config_init=config_init, config_run=config_run)

assert isinstance(self._tokenizer, transformers.PreTrainedTokenizerBase)

# Instantiate GenerationConfig object from config dict.
self._hf_config_run = transformers.GenerationConfig.from_pretrained(
self._name, **self._config_run
)
# To avoid deprecation warning regarding usage of `max_length`.
self._hf_config_run.max_new_tokens = self._hf_config_run.max_length

def init_model(self) -> Any:
self._tokenizer = transformers.AutoTokenizer.from_pretrained(self._name)
init_cfg = self._config_init
if "device" in init_cfg:
self._device = init_cfg.pop("device")

model = transformers.AutoModelForCausalLM.from_pretrained(
self._name, **init_cfg, resume_download=True
)
if self._device:
model.to(self._device)

return model

@property
def hf_account(self) -> str:
return "mistralai"

def __call__(self, prompts: Iterable[str]) -> Iterable[str]: # type: ignore[override]
assert callable(self._tokenizer)
assert hasattr(self._model, "generate")
assert hasattr(self._tokenizer, "batch_decode")
prompts = list(prompts)

tokenized_input_ids = [
self._tokenizer(
prompt if not self._is_instruct else f"<s>[INST] {prompt} [/INST]",
return_tensors="pt",
).input_ids
for prompt in prompts
]
if self._device:
tokenized_input_ids = [tp.to(self._device) for tp in tokenized_input_ids]

return [
self._tokenizer.decode(
self._model.generate(
input_ids=tok_ii, generation_config=self._hf_config_run
)[:, tok_ii.shape[1] :][0],
skip_special_tokens=True,
)
for tok_ii in tokenized_input_ids
]

@staticmethod
def compile_default_configs() -> Tuple[Dict[str, Any], Dict[str, Any]]:
default_cfg_init, default_cfg_run = HuggingFace.compile_default_configs()
return (
default_cfg_init,
default_cfg_run,
)


@registry.llm_models("spacy.Mistral.v1")
def mistral_hf(
name: Mistral.MODEL_NAMES,
config_init: Optional[Dict[str, Any]] = SimpleFrozenDict(),
config_run: Optional[Dict[str, Any]] = SimpleFrozenDict(),
) -> Callable[[Iterable[str]], Iterable[str]]:
"""Generates Mistral instance that can execute a set of prompts and return the raw responses.
name (Literal): Name of the Falcon model. Has to be one of Falcon.get_model_names().
config_init (Optional[Dict[str, Any]]): HF config for initializing the model.
config_run (Optional[Dict[str, Any]]): HF config for running the model.
RETURNS (Callable[[Iterable[str]], Iterable[str]]): Falcon instance that can execute a set of prompts and return
the raw responses.
"""
return Mistral(name=name, config_init=config_init, config_run=config_run)
67 changes: 67 additions & 0 deletions spacy_llm/tests/models/test_mistral.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
import copy

import pytest
import spacy
from confection import Config # type: ignore[import]
from thinc.compat import has_torch_cuda_gpu

from ...compat import torch

_PIPE_CFG = {
"model": {
"@llm_models": "spacy.Mistral.v1",
"name": "Mistral-7B-v0.1",
},
"task": {"@llm_tasks": "spacy.NoOp.v1"},
}

_NLP_CONFIG = """

[nlp]
lang = "en"
pipeline = ["llm"]
batch_size = 128

[components]

[components.llm]
factory = "llm"

[components.llm.task]
@llm_tasks = "spacy.NoOp.v1"

[components.llm.model]
@llm_models = "spacy.Mistral.v1"
name = "Mistral-7B-v0.1"
"""


@pytest.mark.gpu
@pytest.mark.skipif(not has_torch_cuda_gpu, reason="needs GPU & CUDA")
def test_init():
"""Test initialization and simple run."""
nlp = spacy.blank("en")
cfg = copy.deepcopy(_PIPE_CFG)
nlp.add_pipe("llm", config=cfg)
nlp("This is a test.")
torch.cuda.empty_cache()


@pytest.mark.gpu
@pytest.mark.skipif(not has_torch_cuda_gpu, reason="needs GPU & CUDA")
def test_init_from_config():
orig_config = Config().from_str(_NLP_CONFIG)
nlp = spacy.util.load_model_from_config(orig_config, auto_fill=True)
assert nlp.pipe_names == ["llm"]
torch.cuda.empty_cache()


@pytest.mark.gpu
@pytest.mark.skipif(not has_torch_cuda_gpu, reason="needs GPU & CUDA")
def test_invalid_model():
orig_config = Config().from_str(_NLP_CONFIG)
config = copy.deepcopy(orig_config)
config["components"]["llm"]["model"]["name"] = "x"
with pytest.raises(ValueError, match="unexpected value; permitted"):
spacy.util.load_model_from_config(config, auto_fill=True)
torch.cuda.empty_cache()