-
Notifications
You must be signed in to change notification settings - Fork 6.4k
CuckooTable Format
We introduce a new SST file format based on Cuckoo Hashing which is optimized for very high point lookup rates. Applications which don't use range scan but require very fast point lookups can use this new table format. See here for a detailed description of algorithm.
Advantages:
- For most lookups, only one memory access required per lookup.
- The database is smaller by 8 bytes per key after compaction as we don't store sequence number and value type in the key.
Limitations:
- Because the file format is hashing based, range scan is very slow
- Key and value lengths are fixed
- Does not support Merge Operator
- Does not support Snapshots
- File must be mmaped
- The last SST file in the database may have a utilization of only 50% in worst case.
We have plans to reduce some of the limitations in future.
A new table factory can be created by calling NewCuckooTableFactory()
function in table.h
. See comments in include/rocksdb/table.h
or blogpost for description of parameters.
Examples:
options.table_factory.reset(NewCuckooTableFactory());
or
options.table_factory.reset(NewCuckooTableFactory(
0.9 /* hash_table_ratio */,
100 /* max_search_depth */,
5 /* cuckoo_block_size */);
The Cuckoo SST file comprises of:
- Hash table containing key value pairs. Empty buckets are filled using a special key outside the key range in the table.
- Property Block containing Table properties
- Metadata and footer.
<beginning_of_file>
<beginning_of_hash_table>
[key1 value1]
[key2 value2]
[key3 value3]
...
[More key-values including empty buckets]
...
[keyN valueN]
<end_of_hash_table>
[Property Block]
[Footer] (fixed size; starts at file_size - sizeof(Footer))
<end_of_file>
It must be noted that for optimizing hash computation, we fixed the number of buckets in a hash table to be a power of two. So, file sizes can only be a fixed set of values and hence the size of files may be considerably smaller than the values determined by options.target_file_size_base
and options.target_file_size_multiplier
parameters.
We filled the db with 100M records in 8 files with key length of 8 bytes and value length of 4 bytes. We chose the default Cuckoo hash parameter: hash_table_ratio=0.9, max_search_depth=100, cuckoo_block_size=5
.
Command to create and compact DB:
./db_bench --disable_seek_compaction=1 --statistics=1 --histogram=1 --cache_size=1048576 --bloom_bits=10 --cache_numshardbits=4 --open_files=500000 --verify_checksum=1 --write_buffer_size=1073741824 --max_write_buffer_number=2 --level0_slowdown_writes_trigger=16 --level0_stop_writes_trigger=24 --delete_obsolete_files_period_micros=300000000 --max_grandparent_overlap_factor=10 --stats_per_interval=1 --stats_interval=10000000 --compression_type=none --compression_ratio=1 --memtablerep=vector --sync=0 --disable_data_sync=1 --key_size=8 --value_size=4 --num_levels=7 --threads=1 --mmap_read=1 --mmap_write=0 --max_bytes_for_level_base=4294967296 --target_file_size_base=201327616 --level0_file_num_compaction_trigger=10 --max_background_compactions=20 --use_existing_db=0 --disable_wal=1 --db=/mnt/tmp/cuckoo/2M100 --use_cuckoo_table=1 --use_uint64_comparator --benchmarks=filluniquerandom,compact --cuckoo_hash_ratio=0.9 --num=100000000
Random Read:
readrandom : 0.371 micros/op 2698931 ops/sec; (809679999 of 809679999 found)
./db_bench --stats_interval=10000000 --open_files=-1 --key_size=8 --value_size=4 --num_levels=7 --threads=1 --mmap_read=1 --mmap_write=0 --use_existing_db=1 --disable_wal=1 --db=/mnt/tmp/cuckoo/2M100 --use_cuckoo_table=1 --benchmarks=readrandom --num=100000000 --readonly --use_uint64_comparator --duration=300
Multi Random Read:
multireadrandom : 0.278 micros/op 3601345 ops/sec; (1080449950 of 1080449950 found)
./db_bench --stats_interval=10000000 --open_files=-1 --key_size=8 --value_size=4 --num_levels=7 --threads=1 --mmap_read=1 --mmap_write=0 --use_existing_db=1 --disable_wal=1 --db=/mnt/tmp/cuckoo/2M100 --use_cuckoo_table=1 --benchmarks=multireadrandom --num=10000000 --duration=300 --readonly --batch_size=50 --use_uint64_comparator
Note that the MultiGet experiment contains an implementation of MultiGet() in readonly mode which is not yet checked in. The performance is likely to improve further as we submit more optimizations that we have identified.
Contents
- RocksDB Wiki
- Overview
- RocksDB FAQ
- Terminology
- Requirements
- Contributors' Guide
- Release Methodology
- RocksDB Users and Use Cases
- RocksDB Public Communication and Information Channels
-
Basic Operations
- Iterator
- Prefix seek
- SeekForPrev
- Tailing Iterator
- Compaction Filter
- Multi Column Family Iterator
- Read-Modify-Write (Merge) Operator
- Column Families
- Creating and Ingesting SST files
- Single Delete
- Low Priority Write
- Time to Live (TTL) Support
- Transactions
- Snapshot
- DeleteRange
- Atomic flush
- Read-only and Secondary instances
- Approximate Size
- User-defined Timestamp
- Wide Columns
- BlobDB
- Online Verification
- Options
- MemTable
- Journal
- Cache
- Write Buffer Manager
- Compaction
- SST File Formats
- IO
- Compression
- Full File Checksum and Checksum Handoff
- Background Error Handling
- Huge Page TLB Support
- Tiered Storage (Experimental)
- Logging and Monitoring
- Known Issues
- Troubleshooting Guide
- Tests
- Tools / Utilities
-
Implementation Details
- Delete Stale Files
- Partitioned Index/Filters
- WritePrepared-Transactions
- WriteUnprepared-Transactions
- How we keep track of live SST files
- How we index SST
- Merge Operator Implementation
- RocksDB Repairer
- Write Batch With Index
- Two Phase Commit
- Iterator's Implementation
- Simulation Cache
- [To Be Deprecated] Persistent Read Cache
- DeleteRange Implementation
- unordered_write
- Extending RocksDB
- RocksJava
- Lua
- Performance
- Projects Being Developed
- Misc