Skip to content
This repository has been archived by the owner on Mar 19, 2024. It is now read-only.

Commit

Permalink
BYOL improvements
Browse files Browse the repository at this point in the history
  • Loading branch information
iseessel committed Oct 17, 2021
1 parent 6e3063d commit 5f76155
Show file tree
Hide file tree
Showing 13 changed files with 129 additions and 661 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@ config:
TRANSFORMS:
- name: RandomResizedCrop
size: 224
interpolation: 3
- name: RandomHorizontalFlip
- name: ToTensor
- name: Normalize
Expand All @@ -38,6 +39,7 @@ config:
TRANSFORMS:
- name: Resize
size: 256
interpolation: 3
- name: CenterCrop
size: 224
- name: ToTensor
Expand Down Expand Up @@ -82,7 +84,7 @@ config:
PARAMS_FILE: "specify the model weights"
STATE_DICT_KEY_NAME: classy_state_dict
SYNC_BN_CONFIG:
CONVERT_BN_TO_SYNC_BN: True
CONVERT_BN_TO_SYNC_BN: False
SYNC_BN_TYPE: apex
GROUP_SIZE: 8
LOSS:
Expand All @@ -93,22 +95,29 @@ config:
name: sgd
momentum: 0.9
num_epochs: 80
weight_decay: 0
nesterov: True
regularize_bn: False
regularize_bias: True
param_schedulers:
lr:
auto_lr_scaling:
auto_scale: true
base_value: 0.4
# if set to True, learning rate will be scaled.
auto_scale: True
# base learning rate value that will be scaled.
base_value: 0.2
# batch size for which the base learning rate is specified. The current batch size
# is used to determine how to scale the base learning rate value.
# scaled_lr = ((batchsize_per_gpu * world_size) * base_value ) / base_lr_batch_size
base_lr_batch_size: 256
name: multistep
values: [0.4, 0.3, 0.2, 0.1, 0.05]
milestones: [16, 32, 48, 64]
update_interval: epoch
# scaling_type can be set to "sqrt" to reduce the impact of scaling on the base value
scaling_type: "linear"
name: constant
update_interval: "epoch"
value: 0.2
DISTRIBUTED:
BACKEND: nccl
NUM_NODES: 8
NUM_NODES: 4
NUM_PROC_PER_NODE: 8
INIT_METHOD: tcp
RUN_ID: auto
Expand Down
4 changes: 2 additions & 2 deletions configs/config/dataset_catalog.json
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,8 @@
"val": ["airstore://flashblade_imagenet_val", "<unused>"]
},
"imagenet1k_folder": {
"train": ["/datasets01/imagenet_full_size/061417/train", "/datasets01/imagenet_full_size/061417/train"],
"val": ["/datasets01/imagenet_full_size/061417/val", "/datasets01/imagenet_full_size/061417/val"]
"train": ["<img_path>", "<lbl_path>"],
"val": ["<img_path>", "<lbl_path>"]
},
"imagenet_a_filelist": {
"train": ["<not_used>", "<not_used>"],
Expand Down
113 changes: 0 additions & 113 deletions configs/config/pretrain/byol/byol_1node_resnet.yaml

This file was deleted.

9 changes: 5 additions & 4 deletions configs/config/pretrain/byol/byol_8node_resnet.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,7 @@ config:
RESNETS:
DEPTH: 50
ZERO_INIT_RESIDUAL: True
HEAD:
HEAD:
PARAMS: [
["mlp", {"dims": [2048, 4096, 256], "use_relu": True, "use_bn": True}],
["mlp", {"dims": [256, 4096, 256], "use_relu": True, "use_bn": True}]
Expand All @@ -82,15 +82,16 @@ config:
byol_loss:
embedding_dim: 256
momentum: 0.99
OPTIMIZER: # from official BYOL implementation, deepmind-research/byol/configs/byol.py
OPTIMIZER:
name: lars
trust_coefficient: 0.001
eta: 0.001
weight_decay: 1.0e-6
momentum: 0.9
nesterov: False
num_epochs: 300
regularize_bn: False
regularize_bias: True
regularize_bias: False
exclude_bias_and_norm: True
param_schedulers:
lr:
auto_lr_scaling:
Expand Down
135 changes: 0 additions & 135 deletions configs/config/quick_1gpu_resnet50_byol.yaml

This file was deleted.

Loading

0 comments on commit 5f76155

Please sign in to comment.