Skip to content

Commit

Permalink
DataSet<T>: Add helpers, estimators, math functions, restructure Data…
Browse files Browse the repository at this point in the history
…Set, and add tests

- Introduced helper utilities for DataSet<T> access and manipulation.
- Implemented simple estimators and basic mathematical functions.
- Restructured DataSet<T>:
  - Added explicit Range<T>::min and Range<T>::max.
  - Removed `signal_error` in favor of `UncertainValue<T>`.
- Enhanced UncertainValue<T>:
  - Added `isfinite` and `log10` functions.
  - Implemented the `<<` operator for easy formatting.
- Added unit tests for DataSetEstimators, DataSetMath, DataSetTestFunctions, and DataSet functionalities.
- Updated accessors and utility functions to support new features.

Signed-off-by: Ralph J. Steinhagen <[email protected]>
  • Loading branch information
RalphSteinhagen committed Dec 28, 2024
1 parent 0da51c5 commit 5085c7c
Show file tree
Hide file tree
Showing 14 changed files with 1,716 additions and 42 deletions.
511 changes: 511 additions & 0 deletions algorithm/include/gnuradio-4.0/algorithm/dataset/DataSetEstimators.hpp

Large diffs are not rendered by default.

224 changes: 224 additions & 0 deletions algorithm/include/gnuradio-4.0/algorithm/dataset/DataSetHelper.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,224 @@
#ifndef DATASETHELPER_HPP
#define DATASETHELPER_HPP

namespace gr::dataset {
namespace dim {
// N.B. explicitly and individually defined indices, rather than enum class
// since dimensionality is a priori open
inline static constexpr std::size_t X = 0UZ; /// X-axis index
inline static constexpr std::size_t Y = 1UZ; /// Y-axis index
inline static constexpr std::size_t Z = 2UZ; /// Z-axis index
} // namespace dim

namespace detail {
inline void checkRangeIndex(std::size_t minIndex, std::size_t maxIndex, std::size_t dataCount, std::source_location location = std::source_location::current()) {
if (minIndex > maxIndex || maxIndex > dataCount) {
throw gr::exception(fmt::format("{} invalid range: [{},{}), dataCount={}", location, minIndex, maxIndex, dataCount));
}
}

template<typename T, typename U>
[[nodiscard]] constexpr U linearInterpolate(T x0, T x1, U y0, U y1, U y) noexcept {
if (y1 == y0) {
return U(x0);
}
return x0 + (y - y0) * (x1 - x0) / (y1 - y0);
}

template<typename T>
[[nodiscard]] constexpr T sign(T positiveFactor, int val) noexcept {
return (val >= 0) ? positiveFactor : -positiveFactor;
}

} // namespace detail

template<typename T, typename TValue = gr::meta::fundamental_base_value_type_t<T>>
[[nodiscard]] constexpr T getIndexValue(const DataSet<T>& dataSet, std::size_t dimIndex, std::size_t sampleIndex, std::size_t signalIndex = 0UZ) {
if (dimIndex == dim::X) {
if (dataSet.axisCount() == 0UZ || dataSet.axisValues(0UZ).size() <= sampleIndex) {
return std::numeric_limits<TValue>::quiet_NaN();
}
return static_cast<T>(dataSet.axisValues(dim::X)[sampleIndex]);
}

if (dimIndex == dim::Y) {
if (signalIndex >= dataSet.size()) {
return std::numeric_limits<TValue>::quiet_NaN();
}
std::span<const T> vals = dataSet.signalValues(signalIndex);
if (vals.size() <= sampleIndex) {
return std::numeric_limits<TValue>::quiet_NaN();
}
return static_cast<T>(vals[sampleIndex]);
}

throw gr::exception(fmt::format("axis dimIndex {} is out of range [0, {}] and", dimIndex, dataSet.axisCount()));
}

template<typename T>
T getDistance(const DataSet<T>& dataSet, std::size_t dimIndex, std::size_t indexMin = 0UZ, std::size_t indexMax = 0UZ, std::size_t signalIndex = 0UZ) {
if (indexMax == 0UZ) { // renormalise default range
indexMax = dataSet.axisValues(dim::X).size() - 1UZ;
}
detail::checkRangeIndex(indexMin, indexMax, dataSet.axisValues(dim::X).size());

if (dimIndex == dim::X || dimIndex == dim::Y) {
return getIndexValue(dataSet, dimIndex, indexMax, signalIndex) - getIndexValue(dataSet, dimIndex, indexMin, signalIndex);
}

throw gr::exception(fmt::format("axis dimIndex {} is out of range [0, {}] and", dimIndex, dataSet.axisCount()));
}

/*!
* \brief Interpolate in Y dimension at a given X coordinate xValue.
* If out of range, we clamp or return NaN.
*/
template<typename T, typename TValue = gr::meta::fundamental_base_value_type_t<T>, std::convertible_to<TValue> U>
[[nodiscard]] constexpr T getValue(const DataSet<T>& dataSet, std::size_t dimIndex, U xValue, std::size_t signalIndex = 0) {
if (dimIndex == dim::X) {
return xValue; // if user requests X dimension at xValue, that’s basically identity
}

if (dimIndex == dim::Y) { // linear interpolation in X-axis=0
if (dataSet.axisCount() == 0) {
return std::numeric_limits<TValue>::quiet_NaN();
}
const auto& xAxis = dataSet.axisValues(dim::X);
const auto ySpan = dataSet.signalValues(signalIndex);

if (xAxis.empty() || ySpan.empty()) {
return std::numeric_limits<TValue>::quiet_NaN();
}

// clamp
if (xValue <= static_cast<T>(xAxis.front())) {
return static_cast<T>(ySpan.front());
} else if (xValue >= static_cast<T>(xAxis.back())) {
return static_cast<T>(ySpan.back());
}

// binary-search for interval
auto it = std::lower_bound(xAxis.begin(), xAxis.end(), T(xValue));
if (it == xAxis.end()) {
return static_cast<T>(ySpan.back());
}
auto idxHigh = std::distance(xAxis.begin(), it);
if (idxHigh == 0) {
return static_cast<T>(ySpan.front());
}
std::size_t iHigh = static_cast<std::size_t>(idxHigh);
std::size_t iLow = iHigh - 1;

T xLow = static_cast<T>(xAxis[iLow]);
T xHigh = static_cast<T>(xAxis[iHigh]);
T yLow = static_cast<T>(ySpan[iLow]);
T yHigh = static_cast<T>(ySpan[iHigh]);

// linear interpolation
T dx = xHigh - xLow;
if (std::abs(gr::value(dx)) == T(0)) {
return yLow;
}
const T t = (xValue - xLow) / dx;
return yLow + t * (yHigh - yLow);
}

throw gr::exception(fmt::format("axis dimIndex {} is out of range [0, {}] and", dimIndex, dataSet.axisCount()));
}

template<typename T>
std::vector<T> getSubArrayCopy(const DataSet<T>& ds, std::size_t indexMin, std::size_t indexMax, std::size_t signalIndex = 0) {
if (indexMax <= indexMin) {
return {};
}
detail::checkRangeIndex(indexMin, indexMax, ds.axisValues(0).size());
std::span<const T> values = ds.signalValues(signalIndex);
return std::vector<T>(values.begin() + static_cast<std::ptrdiff_t>(indexMin), values.begin() + static_cast<std::ptrdiff_t>(indexMax));
}

template<typename T, typename TValue = gr::meta::fundamental_base_value_type_t<T>>
[[nodiscard]] constexpr T tenLog10(T x) noexcept {
if (std::abs(gr::value(x)) <= T(0)) {
return -std::numeric_limits<TValue>::infinity();
}
return T(10) * gr::math::log10(x); // 10 * log10(x)
}

template<typename T, typename TValue = gr::meta::fundamental_base_value_type_t<T>>
[[nodiscard]] constexpr T decibel(T x) noexcept {
if (std::abs(gr::value(x)) <= T(0)) {
return -std::numeric_limits<TValue>::infinity();
}
return T(20) * gr::math::log10(x); // 20 * log10(x)
}

template<bool ThrowOnFailure = true, typename T>
[[maybe_unused]] constexpr bool verify(const DataSet<T>& dataSet, std::source_location location = std::source_location::current()) {
auto handleFailure = [&](const std::string& message) -> bool {
if constexpr (ThrowOnFailure) {
throw gr::exception(message, location);
}
return false;
};

// axes checks
if (dataSet.axisCount() == 0UZ) {
return handleFailure("DataSet has zero axes.");
}
if (dataSet.axis_names.size() != dataSet.axisCount()) {
return handleFailure("axis_names size does not match axisCount().");
}
if (dataSet.axis_units.size() != dataSet.axisCount()) {
return handleFailure("axis_units size does not match axisCount().");
}
if (dataSet.axis_values.size() != dataSet.axisCount()) {
return handleFailure("axis_values size does not match axisCount().");
}
for (std::size_t axis = 0; axis < dataSet.axisCount(); ++axis) {
if (dataSet.axis_values[axis].empty()) {
return handleFailure(fmt::format("axis_values[{}] is empty.", axis));
}
}

// verify extends
if (dataSet.extents.empty()) {
return handleFailure("DataSet has no extents defined.");
}
for (std::size_t dim = 0; dim < dataSet.extents.size(); ++dim) {
if (dataSet.extents[dim] <= 0) {
return handleFailure(fmt::format("Extent at dimension {} is non-positive.", dim));
}
}

// verify signal_names, signal_quantities, and signal_units sizes match extents[0]
std::size_t num_signals = static_cast<std::size_t>(dataSet.extents[0]);
if (dataSet.signal_names.size() != num_signals) {
return handleFailure("signal_names size does not match extents[0].");
}
if (dataSet.signal_quantities.size() != num_signals) {
return handleFailure("signal_quantities size does not match extents[0].");
}
if (dataSet.signal_units.size() != num_signals) {
return handleFailure("signal_units size does not match extents[0].");
}

std::size_t expected_signal_size = std::accumulate(dataSet.extents.begin(), dataSet.extents.end(), static_cast<std::size_t>(1), std::multiplies<>());
if (dataSet.signal_values.size() != expected_signal_size) {
return handleFailure("signal_values size does not match the product of extents.");
}
if (dataSet.signal_ranges.size() != num_signals) {
return handleFailure("signal_ranges size does not match the number of signals.");
}
if (dataSet.meta_information.size() != num_signals) { // Assuming meta_information per signal value
return handleFailure("meta_information size does not match the number of signals.");
}
if (dataSet.timing_events.size() != num_signals) { // Assuming timing_events per signal value
return handleFailure("timing_events size does not match the number of signals.");
}

return true; // all checks passed
}

} // namespace gr::dataset

#endif // DATASETHELPER_HPP
130 changes: 130 additions & 0 deletions algorithm/include/gnuradio-4.0/algorithm/dataset/DataSetMath.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
#ifndef DATASETMATH_HPP
#define DATASETMATH_HPP

#include <fmt/format.h>

#include <gnuradio-4.0/DataSet.hpp>
#include <gnuradio-4.0/Message.hpp>
#include <gnuradio-4.0/meta/UncertainValue.hpp>

#include "DataSetHelper.hpp"

namespace gr::dataset {

enum class MathOp { ADD = 0, SUBTRACT, MULTIPLY, DIVIDE, SQR, SQRT, LOG10, DB, INV_DB, IDENTITY };

template<typename T>
[[nodiscard]] constexpr bool sameHorizontalBase(const DataSet<T>& ds1, const DataSet<T>& ds2) {
if (ds1.axisCount() == 0 || ds2.axisCount() == 0) {
return false;
}
const auto& x1 = ds1.axisValues(0);
const auto& x2 = ds2.axisValues(0);
if (x1.size() != x2.size()) {
return false;
}
for (std::size_t i = 0; i < x1.size(); i++) {
if (x1[i] != x2[i]) {
return false;
}
}
return true;
}

namespace detail {
template<typename T, typename TValue = gr::meta::fundamental_base_value_type_t<T>>
[[nodiscard]] constexpr T applyMathOperation(MathOp op, T y1, T y2) {
switch (op) {
case MathOp::ADD: return y1 + y2;
case MathOp::SUBTRACT: return y1 - y2;
case MathOp::MULTIPLY: return y1 * y2;
case MathOp::DIVIDE: return (y2 == TValue(0)) ? std::numeric_limits<TValue>::quiet_NaN() : (y1 / y2);
case MathOp::SQR: return (y1 + y2) * (y1 + y2);
case MathOp::SQRT: return (y1 + y2) > TValue(0) ? gr::math::sqrt(y1 + y2) : std::numeric_limits<TValue>::quiet_NaN();
case MathOp::LOG10: return tenLog10((y1 + y2));
case MathOp::DB: return decibel((y1 + y2));
case MathOp::INV_DB: return inverseDecibel(y1);
case MathOp::IDENTITY:
default: return (y1 + y2);
}
}
} // namespace detail

/*!
* \brief mathFunction(DataSet, DataSet, MathOp) => merges or interpolates ds2 onto ds1’s base
*/
template<typename T, typename TValue = gr::meta::fundamental_base_value_type_t<T>>
[[nodiscard]] constexpr DataSet<T> mathFunction(const DataSet<T>& ds1, const DataSet<T>& ds2, MathOp op) {

Check notice on line 58 in algorithm/include/gnuradio-4.0/algorithm/dataset/DataSetMath.hpp

View check run for this annotation

codefactor.io / CodeFactor

algorithm/include/gnuradio-4.0/algorithm/dataset/DataSetMath.hpp#L58

Redundant blank line at the start of a code block should be deleted. (whitespace/blank_line)
// Create new DataSet
DataSet<T> ret;
ret.axis_names = ds1.axis_names;
ret.axis_units = ds1.axis_units;
ret.axis_values = ds1.axis_values; // or we do an interpolation base
ret.layout = ds1.layout;
ret.extents = ds1.extents;
ret.signal_names = {"mathOp"};
ret.signal_quantities = {ds1.signal_quantities.empty() ? "quantity" : ds1.signal_quantities[0]};
ret.signal_units = {ds1.signal_units.empty() ? "" : ds1.signal_units[0]};
ret.signal_ranges = {{T(0.0), T(1.0)}}; // placeholder
ret.meta_information = ds1.meta_information; // or merge
ret.timing_events = ds1.timing_events;

std::size_t dataCount = 0U;
if (!ret.axis_values.empty()) {
dataCount = ret.axis_values[0].size();
}
ret.signal_values.resize(dataCount);

bool needsInterpolation = !sameHorizontalBase(ds1, ds2);

for (std::size_t i = 0; i < dataCount; i++) {
TValue x = gr::value(getIndexValue(ds1, dim::X, i));
T Y1 = getIndexValue(ds1, dim::Y, i);
T Y2 = needsInterpolation ? getValue(ds2, dim::Y, x) : getIndexValue(ds2, dim::Y, i);
T result = detail::applyMathOperation<T>(op, Y1, Y2);
ret.signal_values[i] = static_cast<T>(result);
}
return ret;
}

template<typename T, std::convertible_to<T> U, typename TValue = gr::meta::fundamental_base_value_type_t<T>>
[[nodiscard]] constexpr DataSet<T> mathFunction(const DataSet<T>& ds, U value, MathOp op) {

Check notice on line 93 in algorithm/include/gnuradio-4.0/algorithm/dataset/DataSetMath.hpp

View check run for this annotation

codefactor.io / CodeFactor

algorithm/include/gnuradio-4.0/algorithm/dataset/DataSetMath.hpp#L93

Redundant blank line at the start of a code block should be deleted. (whitespace/blank_line)
DataSet<T> ret = ds; // copy
auto dataCount = ds.axis_values.empty() ? 0UZ : ds.axis_values[0].size();
for (std::size_t i = 0; i < dataCount; i++) {
T Y1 = getIndexValue(ds, dim::Y, i);
T result = 0;
switch (op) {
case MathOp::ADD: result = Y1 + value; break;
case MathOp::SUBTRACT: result = Y1 - value; break;
case MathOp::MULTIPLY: result = Y1 * value; break;
case MathOp::DIVIDE: result = (value == TValue(0)) ? std::numeric_limits<TValue>::quiet_NaN() : (Y1 / value); break;
case MathOp::SQR: result = (Y1 + value) * (Y1 + value); break;
case MathOp::SQRT: result = (Y1 + value) > TValue(0) ? gr::math::sqrt(Y1 + value) : std::numeric_limits<TValue>::quiet_NaN(); break;
case MathOp::LOG10: result = tenLog10(Y1 + value); break;
case MathOp::DB: result = decibel(Y1 + value); break;
case MathOp::INV_DB: result = inverseDecibel(Y1); break;
case MathOp::IDENTITY:
default: result = Y1; break;
}
ret.signal_values[i] = static_cast<T>(result);
}
return ret;
}

template<typename T, std::convertible_to<T> U>

Check notice on line 117 in algorithm/include/gnuradio-4.0/algorithm/dataset/DataSetMath.hpp

View check run for this annotation

codefactor.io / CodeFactor

algorithm/include/gnuradio-4.0/algorithm/dataset/DataSetMath.hpp#L92-L117

Complex Method
[[nodiscard]] constexpr DataSet<T> addFunction(const DataSet<T>& ds, U value) {
return mathFunction(ds, value, MathOp::ADD);
}
template<typename T>
[[nodiscard]] constexpr DataSet<T> addFunction(const DataSet<T>& ds1, const DataSet<T>& ds2) {
return mathFunction(ds1, ds2, MathOp::ADD);
}

// WIP complete other convenience and missing math functions

} // namespace gr::dataset

#endif // DATASETMATH_HPP
Loading

0 comments on commit 5085c7c

Please sign in to comment.