Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add sonic-ize particle transformer to CMSSW_14_1_0_pre0 #15

Open
wants to merge 9 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion Configuration/ProcessModifiers/python/allSonicTriton_cff.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,8 @@
from Configuration.ProcessModifiers.particleNetPTSonicTriton_cff import particleNetPTSonicTriton
from Configuration.ProcessModifiers.deepMETSonicTriton_cff import deepMETSonicTriton
from Configuration.ProcessModifiers.deepTauSonicTriton_cff import deepTauSonicTriton
from Configuration.ProcessModifiers.particleTransformerAK4SonicTriton_cff import particleTransformerAK4SonicTriton

# collect all SonicTriton-related process modifiers here
allSonicTriton = cms.ModifierChain(enableSonicTriton,deepMETSonicTriton,particleNetSonicTriton,deepTauSonicTriton)
allSonicTriton = cms.ModifierChain(enableSonicTriton,deepMETSonicTriton,particleNetSonicTriton,particleNetPTSonicTriton,deepTauSonicTriton,particleTransformerAK4SonicTriton)

Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
import FWCore.ParameterSet.Config as cms

particleTransformerAK4SonicTriton = cms.Modifier()
1 change: 1 addition & 0 deletions RecoBTag/ONNXRuntime/BuildFile.xml
Original file line number Diff line number Diff line change
@@ -1,3 +1,4 @@
<use name="PhysicsTools/ONNXRuntime"/>
<use name="DataFormats/BTauReco"/>
<export>
<lib name="1"/>
Expand Down
38 changes: 38 additions & 0 deletions RecoBTag/ONNXRuntime/interface/tensor_configs.h
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
#ifndef RecoBTag_ONNXRuntime_tensor_configs_h
#define RecoBTag_ONNXRuntime_tensor_configs_h

#include <array>
namespace deepflavour {

constexpr unsigned n_features_global = 15;
Expand Down Expand Up @@ -28,4 +29,41 @@ namespace deepvertex {

} // namespace deepvertex

namespace parT {

enum InputFeatures {
kBegin = 0,
kChargedCandidates = kBegin,
kNeutralCandidates = 1,
kVertices = 2,
kChargedCandidates4Vec = 3,
kNeutralCandidates4Vec = 4,
kVertices4Vec = 5,
kEnd = 6
};

inline constexpr unsigned n_cpf_accept = 25;
inline constexpr unsigned n_npf_accept = 25;
inline constexpr unsigned n_sv_accept = 5;

constexpr std::array<unsigned int, kEnd> N_InputFeatures{{
16, // kChargedCandidates
8, // kNeutralCandidates
14, // kVertices
4, // kChargedCandidates4Vec
4, // kNeutralCandidates4Vec
4, // kVertices4Vec
}};

constexpr std::array<unsigned int, kEnd> N_AcceptedFeatures{{
n_cpf_accept, // kChargedCandidates
n_npf_accept, // kNeutralCandidates
n_sv_accept, // kVertices
n_cpf_accept, // kChargedCandidates4Vec
n_npf_accept, // kNeutralCandidates4Vec
n_sv_accept, // kVertices4Vec
}};

} // namespace parT

#endif
50 changes: 50 additions & 0 deletions RecoBTag/ONNXRuntime/interface/tensor_fillers.h
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,9 @@
#define RecoBTag_ONNXRuntime_tensor_fillers_h

#include "DataFormats/BTauReco/interface/DeepFlavourTagInfo.h"
#include "DataFormats/BTauReco/interface/ParticleTransformerAK4Features.h"
#include "PhysicsTools/ONNXRuntime/interface/ONNXRuntime.h"
#include "RecoBTag/ONNXRuntime/interface/tensor_configs.h"

namespace btagbtvdeep {

Expand All @@ -19,6 +22,53 @@ namespace btagbtvdeep {

void neighbourTrack_tensor_filler(float*& ptr, const btagbtvdeep::TrackPairFeatures& neighbourTrack_features);

std::vector<float> inputs_parT(const btagbtvdeep::ChargedCandidateFeatures& c_pf_features,
parT::InputFeatures ifeature);

std::vector<float> inputs_parT(const btagbtvdeep::NeutralCandidateFeatures& n_pf_features,
parT::InputFeatures ifeature);

std::vector<float> inputs_parT(const btagbtvdeep::SecondaryVertexFeatures& sv_features, parT::InputFeatures ifeature);

template <class parT_features>
void parT_tensor_filler(cms::Ort::FloatArrays& data,
const parT::InputFeatures ifeature,
const std::vector<parT_features>& features,
const unsigned int max_n,
const float*& start,
unsigned offset) {
float* ptr = nullptr;
for (std::size_t n = 0; n < max_n; n++) {
const auto& f = features.at(n);
ptr = &data[ifeature][offset + n * parT::N_InputFeatures.at(ifeature)];
start = ptr;
const std::vector<float>& inputs = inputs_parT(f, ifeature);
for (unsigned int i = 0; i < inputs.size(); i++) {
*ptr = inputs[i];
++ptr;
}
if (inputs.size() > 0)
--ptr;
assert(start + parT::N_InputFeatures.at(ifeature) - 1 == ptr);
}
}

template <class parT_features>
void parT_tensor_filler(std::vector<float>& vdata,
const parT::InputFeatures ifeature,
const std::vector<parT_features>& features,
const unsigned int target_n) {
unsigned int n =
std::clamp((unsigned int)features.size(), (unsigned int)0, (unsigned int)parT::N_AcceptedFeatures.at(ifeature));
for (unsigned int count = 0; count < n; count++) {
const std::vector<float>& inputs = inputs_parT(features.at(count), ifeature);
vdata.insert(vdata.end(), inputs.begin(), inputs.end());
}
unsigned int n_features = parT::N_InputFeatures.at(ifeature);
if (n < target_n)
vdata.insert(vdata.end(), (target_n - n) * n_features, 0); // Add 0 to unfilled part as padding value
}

} // namespace btagbtvdeep

#endif
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,9 @@

#include "PhysicsTools/ONNXRuntime/interface/ONNXRuntime.h"

#include "RecoBTag/ONNXRuntime/interface/tensor_fillers.h"
#include "RecoBTag/ONNXRuntime/interface/tensor_configs.h"

using namespace cms::Ort;

class ParticleTransformerAK4ONNXJetTagsProducer : public edm::stream::EDProducer<edm::GlobalCache<ONNXRuntime>> {
Expand All @@ -41,24 +44,9 @@ class ParticleTransformerAK4ONNXJetTagsProducer : public edm::stream::EDProducer
std::vector<std::string> flav_names_;
std::vector<std::string> input_names_;
std::vector<std::string> output_names_;

enum InputIndexes {
kChargedCandidates = 0,
kNeutralCandidates = 1,
kVertices = 2,
kChargedCandidates4Vec = 3,
kNeutralCandidates4Vec = 4,
kVertices4Vec = 5
};
unsigned n_cpf_;
constexpr static unsigned n_features_cpf_ = 16;
constexpr static unsigned n_pairwise_features_cpf_ = 4;
unsigned n_npf_;
constexpr static unsigned n_features_npf_ = 8;
constexpr static unsigned n_pairwise_features_npf_ = 4;
unsigned n_sv_;
constexpr static unsigned n_features_sv_ = 14;
constexpr static unsigned n_pairwise_features_sv_ = 4;
unsigned int n_cpf_;
unsigned int n_npf_;
unsigned int n_sv_;
std::vector<unsigned> input_sizes_;
std::vector<std::vector<int64_t>> input_shapes_; // shapes of each input group (-1 for dynamic axis)

Expand All @@ -84,7 +72,7 @@ void ParticleTransformerAK4ONNXJetTagsProducer::fillDescriptions(edm::Configurat
desc.add<edm::InputTag>("src", edm::InputTag("pfParticleTransformerAK4TagInfos"));
desc.add<std::vector<std::string>>("input_names", {"input_1", "input_2", "input_3", "input_4", "input_5", "input_6"});
desc.add<edm::FileInPath>("model_path",
edm::FileInPath("RecoBTag/Combined/data/RobustParTAK4/PUPPI/V00/RobustParTAK4.onnx"));
edm::FileInPath("RecoBTag/Combined/data/RobustParTAK4/PUPPI/V00/modelfile/model.onnx"));
desc.add<std::vector<std::string>>("output_names", {"softmax"});
desc.add<std::vector<std::string>>(
"flav_names", std::vector<std::string>{"probb", "probbb", "problepb", "probc", "probuds", "probg"});
Expand Down Expand Up @@ -124,12 +112,12 @@ void ParticleTransformerAK4ONNXJetTagsProducer::produce(edm::Event& iEvent, cons
get_input_sizes(taginfo);

// run prediction with dynamic batch size per event
input_shapes_ = {{(int64_t)1, (int64_t)n_cpf_, (int64_t)n_features_cpf_},
{(int64_t)1, (int64_t)n_npf_, (int64_t)n_features_npf_},
{(int64_t)1, (int64_t)n_sv_, (int64_t)n_features_sv_},
{(int64_t)1, (int64_t)n_cpf_, (int64_t)n_pairwise_features_cpf_},
{(int64_t)1, (int64_t)n_npf_, (int64_t)n_pairwise_features_npf_},
{(int64_t)1, (int64_t)n_sv_, (int64_t)n_pairwise_features_sv_}};
input_shapes_ = {{(int64_t)1, (int64_t)n_cpf_, (int64_t)parT::N_InputFeatures.at(parT::kChargedCandidates)},
{(int64_t)1, (int64_t)n_npf_, (int64_t)parT::N_InputFeatures.at(parT::kNeutralCandidates)},
{(int64_t)1, (int64_t)n_sv_, (int64_t)parT::N_InputFeatures.at(parT::kVertices)},
{(int64_t)1, (int64_t)n_cpf_, (int64_t)parT::N_InputFeatures.at(parT::kChargedCandidates4Vec)},
{(int64_t)1, (int64_t)n_npf_, (int64_t)parT::N_InputFeatures.at(parT::kNeutralCandidates4Vec)},
{(int64_t)1, (int64_t)n_sv_, (int64_t)parT::N_InputFeatures.at(parT::kVertices4Vec)}};

outputs = globalCache()->run(input_names_, data_, input_shapes_, output_names_, 1)[0];
assert(outputs.size() == flav_names_.size());
Expand All @@ -151,24 +139,17 @@ void ParticleTransformerAK4ONNXJetTagsProducer::get_input_sizes(
const reco::FeaturesTagInfo<btagbtvdeep::ParticleTransformerAK4Features> taginfo) {
const auto& features = taginfo.features();

unsigned int n_cpf = features.c_pf_features.size();
unsigned int n_npf = features.n_pf_features.size();
unsigned int n_vtx = features.sv_features.size();
n_cpf_ = std::clamp((unsigned int)features.c_pf_features.size(), (unsigned int)1, (unsigned int)parT::n_cpf_accept);
n_npf_ = std::clamp((unsigned int)features.n_pf_features.size(), (unsigned int)1, (unsigned int)parT::n_npf_accept);
n_sv_ = std::clamp((unsigned int)features.sv_features.size(), (unsigned int)1, (unsigned int)parT::n_sv_accept);

n_cpf_ = std::max((unsigned int)1, n_cpf);
n_npf_ = std::max((unsigned int)1, n_npf);
n_sv_ = std::max((unsigned int)1, n_vtx);

n_cpf_ = std::min((unsigned int)25, n_cpf_);
n_npf_ = std::min((unsigned int)25, n_npf_);
n_sv_ = std::min((unsigned int)5, n_sv_);
input_sizes_ = {
n_cpf_ * n_features_cpf_,
n_npf_ * n_features_npf_,
n_sv_ * n_features_sv_,
n_cpf_ * n_pairwise_features_cpf_,
n_npf_ * n_pairwise_features_npf_,
n_sv_ * n_pairwise_features_sv_,
n_cpf_ * parT::N_InputFeatures.at(parT::kChargedCandidates),
n_npf_ * parT::N_InputFeatures.at(parT::kNeutralCandidates),
n_sv_ * parT::N_InputFeatures.at(parT::kVertices),
n_cpf_ * parT::N_InputFeatures.at(parT::kChargedCandidates4Vec),
n_npf_ * parT::N_InputFeatures.at(parT::kNeutralCandidates4Vec),
n_sv_ * parT::N_InputFeatures.at(parT::kVertices4Vec),
};
// init data storage
data_.clear();
Expand All @@ -180,116 +161,26 @@ void ParticleTransformerAK4ONNXJetTagsProducer::get_input_sizes(
}

void ParticleTransformerAK4ONNXJetTagsProducer::make_inputs(btagbtvdeep::ParticleTransformerAK4Features features) {
float* ptr = nullptr;
//float* ptr = nullptr;

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

delete commented-out code

const float* start = nullptr;
unsigned offset = 0;

// c_pf candidates
auto max_c_pf_n = std::min(features.c_pf_features.size(), (std::size_t)n_cpf_);
for (std::size_t c_pf_n = 0; c_pf_n < max_c_pf_n; c_pf_n++) {
const auto& c_pf_features = features.c_pf_features.at(c_pf_n);
ptr = &data_[kChargedCandidates][offset + c_pf_n * n_features_cpf_];
start = ptr;
*ptr = c_pf_features.btagPf_trackEtaRel;
*(++ptr) = c_pf_features.btagPf_trackPtRel;
*(++ptr) = c_pf_features.btagPf_trackPPar;
*(++ptr) = c_pf_features.btagPf_trackDeltaR;
*(++ptr) = c_pf_features.btagPf_trackPParRatio;
*(++ptr) = c_pf_features.btagPf_trackSip2dVal;
*(++ptr) = c_pf_features.btagPf_trackSip2dSig;
*(++ptr) = c_pf_features.btagPf_trackSip3dVal;
*(++ptr) = c_pf_features.btagPf_trackSip3dSig;
*(++ptr) = c_pf_features.btagPf_trackJetDistVal;
*(++ptr) = c_pf_features.ptrel;
*(++ptr) = c_pf_features.drminsv;
*(++ptr) = c_pf_features.vtx_ass;
*(++ptr) = c_pf_features.puppiw;
*(++ptr) = c_pf_features.chi2;
*(++ptr) = c_pf_features.quality;
assert(start + n_features_cpf_ - 1 == ptr);
}

// n_pf candidates
auto max_n_pf_n = std::min(features.n_pf_features.size(), (std::size_t)n_npf_);
for (std::size_t n_pf_n = 0; n_pf_n < max_n_pf_n; n_pf_n++) {
const auto& n_pf_features = features.n_pf_features.at(n_pf_n);
ptr = &data_[kNeutralCandidates][offset + n_pf_n * n_features_npf_];
start = ptr;
*ptr = n_pf_features.ptrel;
*(++ptr) = n_pf_features.etarel;
*(++ptr) = n_pf_features.phirel;
*(++ptr) = n_pf_features.deltaR;
*(++ptr) = n_pf_features.isGamma;
*(++ptr) = n_pf_features.hadFrac;
*(++ptr) = n_pf_features.drminsv;
*(++ptr) = n_pf_features.puppiw;
assert(start + n_features_npf_ - 1 == ptr);
}

// sv candidates
auto max_sv_n = std::min(features.sv_features.size(), (std::size_t)n_sv_);
for (std::size_t sv_n = 0; sv_n < max_sv_n; sv_n++) {
const auto& sv_features = features.sv_features.at(sv_n);
ptr = &data_[kVertices][offset + sv_n * n_features_sv_];
start = ptr;
*ptr = sv_features.pt;
*(++ptr) = sv_features.deltaR;
*(++ptr) = sv_features.mass;
*(++ptr) = sv_features.etarel;
*(++ptr) = sv_features.phirel;
*(++ptr) = sv_features.ntracks;
*(++ptr) = sv_features.chi2;
*(++ptr) = sv_features.normchi2;
*(++ptr) = sv_features.dxy;
*(++ptr) = sv_features.dxysig;
*(++ptr) = sv_features.d3d;
*(++ptr) = sv_features.d3dsig;
*(++ptr) = sv_features.costhetasvpv;
*(++ptr) = sv_features.enratio;
assert(start + n_features_sv_ - 1 == ptr);
}

// c_pf candidates
parT_tensor_filler(data_, parT::kChargedCandidates, features.c_pf_features, max_c_pf_n, start, offset);
// n_pf candidates
parT_tensor_filler(data_, parT::kNeutralCandidates, features.n_pf_features, max_n_pf_n, start, offset);
// sv candidates
parT_tensor_filler(data_, parT::kVertices, features.sv_features, max_sv_n, start, offset);
// cpf pairwise features (4-vectors)
auto max_cpf_n = std::min(features.c_pf_features.size(), (std::size_t)n_cpf_);
for (std::size_t cpf_n = 0; cpf_n < max_cpf_n; cpf_n++) {
const auto& cpf_pairwise_features = features.c_pf_features.at(cpf_n);
ptr = &data_[kChargedCandidates4Vec][offset + cpf_n * n_pairwise_features_cpf_];
start = ptr;
*ptr = cpf_pairwise_features.px;
*(++ptr) = cpf_pairwise_features.py;
*(++ptr) = cpf_pairwise_features.pz;
*(++ptr) = cpf_pairwise_features.e;

assert(start + n_pairwise_features_cpf_ - 1 == ptr);
}

parT_tensor_filler(data_, parT::kChargedCandidates4Vec, features.c_pf_features, max_c_pf_n, start, offset);
// npf pairwise features (4-vectors)
auto max_npf_n = std::min(features.n_pf_features.size(), (std::size_t)n_npf_);
for (std::size_t npf_n = 0; npf_n < max_npf_n; npf_n++) {
const auto& npf_pairwise_features = features.n_pf_features.at(npf_n);
ptr = &data_[kNeutralCandidates4Vec][offset + npf_n * n_pairwise_features_npf_];
start = ptr;
*ptr = npf_pairwise_features.px;
*(++ptr) = npf_pairwise_features.py;
*(++ptr) = npf_pairwise_features.pz;
*(++ptr) = npf_pairwise_features.e;

assert(start + n_pairwise_features_npf_ - 1 == ptr);
}

parT_tensor_filler(data_, parT::kNeutralCandidates4Vec, features.n_pf_features, max_n_pf_n, start, offset);
// sv pairwise features (4-vectors)
auto max_sv_N = std::min(features.sv_features.size(), (std::size_t)n_sv_);
for (std::size_t sv_N = 0; sv_N < max_sv_N; sv_N++) {
const auto& sv_pairwise_features = features.sv_features.at(sv_N);
ptr = &data_[kVertices4Vec][offset + sv_N * n_pairwise_features_sv_];
start = ptr;
*ptr = sv_pairwise_features.px;
*(++ptr) = sv_pairwise_features.py;
*(++ptr) = sv_pairwise_features.pz;
*(++ptr) = sv_pairwise_features.e;

assert(start + n_pairwise_features_sv_ - 1 == ptr);
}
parT_tensor_filler(data_, parT::kVertices4Vec, features.sv_features, max_sv_n, start, offset);
}

//define this as a plug-in
Expand Down
Loading