Skip to content

Commit

Permalink
Merge pull request #3 from fastmachinelearning/nvt_cfp_2
Browse files Browse the repository at this point in the history
update for the CFP
  • Loading branch information
nhanvtran authored Jul 31, 2023
2 parents 6c905d0 + ea63146 commit d7b7806
Show file tree
Hide file tree
Showing 3 changed files with 65 additions and 0 deletions.
1 change: 1 addition & 0 deletions committee.html
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
<link href="css/frame.css" media="screen" rel="stylesheet" type="text/css" />
<link href="css/controls.css" media="screen" rel="stylesheet" type="text/css" />
<link href="css/custom.css" media="screen" rel="stylesheet" type="text/css" />
<link rel="canonical" href="https://fastmachinelearning.org/iccad2023">
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css">
<link href='https://fonts.googleapis.com/css?family=Open+Sans:400,700' rel='stylesheet' type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300,700' rel='stylesheet' type='text/css'>
Expand Down
1 change: 1 addition & 0 deletions program.html
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
<link href="css/frame.css" media="screen" rel="stylesheet" type="text/css" />
<link href="css/controls.css" media="screen" rel="stylesheet" type="text/css" />
<link href="css/custom.css" media="screen" rel="stylesheet" type="text/css" />
<link rel="canonical" href="https://fastmachinelearning.org/iccad2023">
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css">
<link href='https://fonts.googleapis.com/css?family=Open+Sans:400,700' rel='stylesheet' type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300,700' rel='stylesheet' type='text/css'>
Expand Down
63 changes: 63 additions & 0 deletions submission.html
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
<link href="css/frame.css" media="screen" rel="stylesheet" type="text/css" />
<link href="css/controls.css" media="screen" rel="stylesheet" type="text/css" />
<link href="css/custom.css" media="screen" rel="stylesheet" type="text/css" />
<link rel="canonical" href="https://fastmachinelearning.org/iccad2023">
<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css">
<link href='https://fonts.googleapis.com/css?family=Open+Sans:400,700' rel='stylesheet' type='text/css'>
<link href='https://fonts.googleapis.com/css?family=Open+Sans+Condensed:300,700' rel='stylesheet' type='text/css'>
Expand Down Expand Up @@ -36,6 +37,50 @@ <h1>Paper Submission</h1>
</div>
</div>
</div>
<!-------------------------------------------------------------------------------------------->
<div class="content-container">
<div class="content">
<div class="content-table flex-column">
<div class="flex-row">
<!--Start Overview-->
<div class="flex-item flex-column">
<h2 class="add-top-margin">Overview</h2>
<hr>
<p class="text text-justify">
This workshop aims to address emerging challenges and explore innovative solutions in the field of computer-aided design (CAD)
for integrated circuits and systems for ultra low latency and high bandwidth scientific applications.
The workshop builds on the ideas laid out in the <a href="https://doi.org/10.3389/fdata.2022.787421">"Applications and Techniques for Fast Machine Learning in Science"</a> white paper
and the corresponding Fast Machine Learning for Science conference series (<a href="https://indico.cern.ch/event/1283970/">2023 edition</a>).
This workshop at ICCAD 2023 aims to bring domains together and forge new connections with the CAD community.
</p>
<p class="text text-justify">
Scientific applications across particle physics, astrophysics, material sciences, quantum information sciences, fusion energy (and beyond!)
utilize data acquisition and in situ processing systems which require very low latency and high data bandwidth custom processing elements
and real-time control modules. Integrating data reduction and control applications with real-time machine learning algorithms can enable significant
breakthroughs in the sciences. We will bring together researchers, practitioners, and industry experts to exchange ideas, share applications,
and discuss the latest advancements in CAD methodologies, algorithms, and tools.
</p>
</div>
</div>
<!--Start Topics-->
<div class="flex-row">
<div class="flex-item flex-column">
<h2 class="add-top-margin">Topics of interest</h2>
<hr>
<p class="text">The areas of interest related to real-time scientific applications include but are not limited to:</p>
<ul>
<li>Methods and tools for efficient algorithm design, implementation, and integration methodologies</li>
<li>Software-hardware codesign, partitioning, and optimizations</li>
<li>Design automation and synthesis, timing analysis</li>
<li>Physical design and layout</li>
<li>High-level synthesis and system-level design for edge AI hardware</li>
<li>Robust machine learning, anomaly detection, and fault tolerance</li>
<li>Continuous, adaptive, and reinforcement learning for low latency control</li>
<li>Emerging technologies in CAD machine learning and AI-assisted design</li>
</ul>
</div>
</div>
</div>
<!-------------------------------------------------------------------------------------------->
<div class="content-container">
<div class="content">
Expand Down Expand Up @@ -68,11 +113,29 @@ <h2 class="add-top-margin">Format</h2>
<p class="text">Please submit papers (in PDFs) via <a href="https://fastml-iccad-23.hotcrp.com">HOTCRP</a>. The papers (.pdf format) should follow the <a href="https://www.acm.org/publications/proceedings-template">ACM Template</a>. <a href="https://www.overleaf.com/latex/templates/association-for-computing-machinery-acm-sig-proceedings-template/bmvfhcdnxfty">Here</a> is a paper sample.
</div>
</div>
<div class="flex-row">
<div class="flex-item flex-column">
<h2 class="add-top-margin">Organizers</h2>
<hr>
<ul>
<li>Nhan Tran, Fermilab and Northwestern University, USA</li>
<li>Paolo D'Alberto, AMD, USA</li>
<li>Javier Duarte, UC San Diego, USA</li>
<li>Ryan Kastner, UC San Diego, USA</li>
<li>Miaoyuan Liu, Purdue University, USA</li>
<li>Seda Ogrenci, Northwestern University, USA</li>
</ul>
<p class="text">
Contact: ntran at fnal dot gov
</p>
</div>
</div>
<div class="flex-row">
<div class="flex-item flex-column">
<p>© Fast Machine Learning for Science @ ICCAD, 2023</p>
</div>
</div>

</div>
</div>
</div>
Expand Down

0 comments on commit d7b7806

Please sign in to comment.