Skip to content

Commit

Permalink
Merge pull request #1 from fastmachinelearning/nvt_cfp
Browse files Browse the repository at this point in the history
add the CFP
  • Loading branch information
nhanvtran authored Jun 30, 2023
2 parents a297e38 + acc47fb commit ed4fa24
Show file tree
Hide file tree
Showing 2 changed files with 23 additions and 14 deletions.
27 changes: 18 additions & 9 deletions index.html
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@
<h1>Fast Machine Learning for Science Workshop</h1>
<hr>
<h5>Co-located with 2023 <u><a href="https://iccad.com/" style="color: white">International Conference on Computer-Aided Design (ICCAD)</a></u> </h5>
<h4>Date: TBD</h4>
<h4>Date: November 2, 2023</h4>
<p></p>
</div>
</div>
Expand All @@ -52,10 +52,17 @@ <h4>Date: TBD</h4>
<h2 class="add-top-margin">Overview</h2>
<hr>
<p class="text text-justify">
At bibendum potenti ipsum eros, leo interdum mus. Fusce volutpat risus fermentum volutpat. Convallis justo cras curabitur fames. Sagittis accumsan rhoncus maecenas libero dapibus condimentum ut suscipit. Potenti habitant quisque conubia luctus interdum leo metus aliquam curabitur eros fringilla natoque? Gravida at malesuada sociosqu lorem condimentum diam. Ante quam netus vehicula mus a cras et et purus senectus. Ultricies curabitur porta volutpat adipiscing, phasellus varius. Sollicitudin.
Our proposed workshop aims to address emerging challenges and explore innovative solutions in the field of computer-aided design (CAD)
for integrated circuits and systems for ultra low latency and high bandwidth scientific applications.
The workshop builds on the ideas laid out in this white paper: <a href="https://doi.org/10.3389/fdata.2022.787421">“Applications and Techniques for Fast Machine Learning in Science”</a>
and the corresponding conference series Fast Machine Learning for Science (<a href="https://indico.cern.ch/event/1283970/">2023 edition</a>). This workshop at ICCAD 2023 aims to bring domains together and forge new connections with the CAD community.
</p>
<p class="text text-justify">
Dignissim hendrerit hendrerit placerat taciti vestibulum in cursus laoreet class sem libero. Dolor sociosqu urna orci dignissim maecenas arcu. Nascetur nostra aliquam mi dis tempus nec facilisis tristique pulvinar ornare aenean urna! Malesuada varius praesent varius nulla, non iaculis. Enim aliquam nulla pellentesque taciti enim facilisis etiam felis varius. Gravida, porttitor in ad. Ullamcorper nullam metus nisl donec vehicula ac. Rhoncus quisque pulvinar eget felis. Mauris dui class purus quis velit sem dignissim. Mus tellus potenti parturient. Ut est molestie.
Scientific applications across particle physics, astrophysics, material sciences, quantum information sciences, fusion energy (and beyond!)
utilize data acquisition and in situ processing systems which require very low latency and high data bandwidth custom processing elements
and real-time control modules. Integrating data reduction and control applications with real-time machine learning algorithms can enable significant
breakthroughs in the sciences. We will bring together researchers, practitioners, and industry experts to exchange ideas, share applications,
and discuss the latest advancements in CAD methodologies, algorithms, and tools.
</p>
</div>
</div>
Expand All @@ -64,13 +71,15 @@ <h2 class="add-top-margin">Overview</h2>
<div class="flex-item flex-column">
<h2 class="add-top-margin">Topics of interest</h2>
<hr>
<p class="text">The areas of interest include but are not limited to: </p>
<p class="text">Topics of interest as they are related to real-time scientific applications: </p>
<ul>
<li>Topic 1</li>
<li>Topic 2</li>
<li>Topic 3</li>
<li>Topic 4</li>
<li>Topic 5</li>
<li>Efficient algorithm design, implementation, and integration methodologies</li>
<li>Design automation and synthesis, timing analysis and optimization </li>
<li>Physical design and layout </li>
<li>High-level synthesis and system-level design for edge AI hardware</li>
<li>Robust machine learning, anomaly detection, and fault tolerance</li>
<li>Continuous, adaptive, and reinforcement learning for low latency control</li>
<li>Emerging technologies in CAD Machine learning and AI-assisted design</li>
</ul>
</div>
</div>
Expand Down
10 changes: 5 additions & 5 deletions submission.html
Original file line number Diff line number Diff line change
Expand Up @@ -45,10 +45,10 @@ <h1>Paper Submission</h1>
<h2 class="add-top-margin">Important Dates</h2>
<hr>
<ul>
<li>Paper Submission Deadline: TBD</li>
<li>Notification: TBD</li>
<li>Camera-Ready: TBD</li>
<li>Workshop: TBD</li>
<li>Paper Submission Deadline: September 23, 2023 AOE</li>
<li>Notification: October 20, 2023 </li>
<li>Camera-Ready: October 27. 2023</li>
<li>Workshop: November 2, 2023</li>
</ul>
</div>
</div>
Expand All @@ -57,7 +57,7 @@ <h2 class="add-top-margin">Important Dates</h2>
<h2 class="add-top-margin">Format</h2>
<hr>
<p class="text">
We welcome four types of submissions:
We welcome three types of submissions:
</p>
<ol class="nested">
<li>Technical papers with evaluation results</li>
Expand Down

0 comments on commit ed4fa24

Please sign in to comment.