-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVariableSPL.py
317 lines (264 loc) · 13.2 KB
/
VariableSPL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import xsimlab as xs
import xarray as xr
import numpy as np
import numba
#----------------
from numba.extending import get_cython_function_address
from numba import cfunc, vectorize, njit
import ctypes
# define the lower regularized incomplete gamma function for use with numba
addr = get_cython_function_address("scipy.special.cython_special", "gammainc")
functype = ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double, ctypes.c_double)
gammainc_fn = functype(addr)
@vectorize('float64(float64, float64)')
def vec_gammainc(x, y):
return gammainc_fn(x, y)
@njit
def gammainc_in_njit(x, y):
return vec_gammainc(x, y)
# define the upper regularized incomplete gamma function for use with numba
addr = get_cython_function_address("scipy.special.cython_special", "gammaincc")
functype = ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double, ctypes.c_double)
gammaincc_fn = functype(addr)
@vectorize('float64(float64, float64)')
def vec_gammaincc(x, y):
return gammaincc_fn(x, y)
@njit
def gammaincc_in_njit(x, y):
return vec_gammaincc(x, y)
# define the gamma function for use with numba
addr = get_cython_function_address("scipy.special.cython_special", "__pyx_fuse_1gamma")
functype = ctypes.CFUNCTYPE(ctypes.c_double, ctypes.c_double)
gamma_fn = functype(addr)
@vectorize('float64(float64)')
def vec_gamma(x):
return gamma_fn(x)
@njit
def gamma_in_njit(x):
return vec_gamma(x)
#----------------
def hydroecology(a, ac, lambda0, alpha0, PET, s0):
'''
Hydroecological module computing the mean discharge and discharge variability
In input:
- a: array of drainage areas
- ac : array of storm size
- lambda0 : array of storm frequency
- alpha0: array of storm depth
- PET: Potential evapo-transpiration
- s0: array of dynamic soil storage
In output:
- mu: mean daily streamflow
- nu: streamflow variability
- tau: hydrologic response time scale
- eta: ratio of drainage area to storm size
- omega: streamflow ratio
'''
tau = (a/13782.539332528866)**0.13267696811579874 #tau is catchment response time
eta = np.where(a>ac,a/ac,1) # eta is ratio of drainage area to storm size
pbar = lambda0*alpha0 # mean precipitation rate
phi = PET/pbar
sstar = np.where(s0>0, s0 / alpha0, 1) # effective soil depth
omega = np.where(s0>0,(phi*sstar**(sstar/phi)*np.exp(-sstar)
/sstar/gamma_in_njit(sstar/phi)/gammainc_in_njit(sstar/phi,sstar)),1)
lambdac = 1-(1-lambda0)**eta
alphac = lambda0*alpha0/lambdac
nu = 1/omega/lambdac/tau
mu = omega*alphac*lambdac
return mu, nu, tau, eta, omega
#----------------
@numba.njit
def solve(h0, m, n, a, kf, mu, nu, epsc, p, b, gamma, dt, length, stack, rec):
'''
Variable Discharge SPL model
Returns incremental change in height over the time step
In input:
- h0: topograpyh at starts of time step (array of length nnode)
- m: spl area exponent
- n: spl slope exponent
- a: drainage area (array of length nnode)
- kf erodibility or spl rate parameter
- mu: mean streamflow (array of length nnode)
- nu: streamflow variability (array of length nnode)
- epsc: critical erosion rate
- p: slope exponent in critical discharge expression
(=ad; if p=3n/8=> qc decreases with slope,
if p=n=> qc has no dependence on slope,
- b: recession exponent (must be 1 or 2)
- gamma: daily streampower exponent
- dt: time step
- length: distance to receiver (array of length nnode)
- stack: stack order (array of length nnode)
- rec: receiver node (arrays of length nnode)
In output:
- dh: incremental topography change over time step
'''
h = h0.copy()
qcstar = np.zeros_like(h)
tol = 1e-3
for i in stack:
if (length[i]>0 and h[i]>h[rec[i]]):
hr = h[rec[i]] # hr is receiver height
dh0 = h0[i] - hr # dh0 is difference between node height and its receiver height
S0 = dh0/length[i] # S0 is initial slope between node and its receiver
F = dt*kf[i]*mu[i]**m*a[i]**m/dh0*S0**n # F factor
G = dt*epsc/dh0*S0**p # G factor
err = tol*2 # initializes error
z = 1 # initializes z, the normalized/dimensionless height
iter = 0
while np.abs(err)>tol: # Newton-Raphson iterative loop
iter=iter+1
qc = (G/F)**(1/gamma)*z**((p-n)/gamma) # qc is normalized critical streamflow
dxqc = qc*(p-n)/gamma/z # dxqc is derivative of qc with respect to z
if b==1:
# compute mue = mu_epsilon
mue = (gamma_in_njit(1/nu[i]+gamma)/gamma_in_njit(1/nu[i])/nu[i]**(-gamma)*
gammaincc_in_njit(1/nu[i]+gamma,qc/nu[i]))
# compute lae = lambda_epsilon
lae = (gammaincc_in_njit(1/nu[i],qc/nu[i]))
# compute dqmue = derivative of mu_epsilon with respect to qc
dqmue = (-np.exp(-qc/nu[i])*(qc/nu[i])**(1/nu[i]+gamma-1)/gamma_in_njit(1/nu[i])/nu[i]**(-gamma+1))
# compute dqlae = derivative of lambda_epsilon with respect to qc
dqlae = (-np.exp(-qc/nu[i])*(qc/nu[i])**(1/nu[i]-1)/gamma_in_njit(1/nu[i])/nu[i])
elif b==2:
# compute mue = mu_epsilon
mue = (gamma_in_njit(1/nu[i]+1-gamma)/gamma_in_njit(1/nu[i])/nu[i]**(gamma-1)*
gammainc_in_njit(1/nu[i]+1-gamma,1/qc/nu[i]))
# copmute lae = lambda_epsilon
lae = (gammainc_in_njit(1/nu[i]+1,1/qc/nu[i]))
# compute dqmue = derivative of mu_epsilon with respect to qc
dqmue = (-np.exp(-1/qc/nu[i])*(1/qc/nu[i])**(1/nu[i]-gamma+2)/gamma_in_njit(1/nu[i])/nu[i]**(gamma-2))
# compute dqlae = derivative of lambda_epsilon with respect to qc
dqlae = (-np.exp(-1/qc/nu[i])*nu[i]*(1/qc/nu[i])**(1/nu[i]+2)/gamma_in_njit(1/nu[i]+1))
dxmue = dqmue*dxqc # dxmue is derivative of mu_epsilon with respect to z
dxlae = dqlae*dxqc # dxlae is derivative of lambda_epsilon with respect to z
# compute f(z) the value of the function for which we search the root
f = z - 1 + F*mue*z**n - G*lae*z**p
# compute the derivative of f(z) with respect to z at z
fp = 1 + F*(mue*n*z**(n-1) + dxmue*z**n) - G*(lae*p*z**(p-1) + dxlae*z**p)
# result is an improved value of z, the root, following Newton-Raphson scheme
# zk = z - np.where(f>0, f/fp, 0)
zk = z - f/fp
err = np.abs(z - zk) # computes error
z = zk # # updates normalized height
h[i] = hr + z*dh0 # updates height once convergence is reached
qcstar[i] = qc
return h-h0, qcstar
#----------------
from fastscape.processes import (RasterGrid2D, SurfaceAfterTectonics, SingleFlowRouter, DrainageArea)
import attr
@xs.process
class VariableSPL:
# input variables
k_coef = xs.variable(dims=[(), ('y', 'x')], intent="in",
description="Erodibility or SPL rate coefficient",
attrs={"units": "m^{2-m}/yrs",
"typical range": "1e-6 -> 1e-4"},
default=1e-5)
area_exp = xs.variable(intent="in", description="SPL area exponent",
attrs={"units": "",
"typical range": "0.3 -> 0.8"},
default=0.45)
slope_exp = xs.variable(intent='in', description="SPL slope exponent",
attrs={"units": "",
"typical range": "0.8->2"},
default=1)
recession_exp = xs.variable(intent='in', description="Recession exponent",
attrs={"units": ""}, validator=attr.validators.in_([1, 2]),
default=1)
slope_exp_critical_stream_flow = xs.variable(intent='in',
description="Slope exponent in critical stream flow",
attrs={"units": "",
"typical range": "3n/8 -> n -> 3n/2 (where n is spl slope exponent)"},
default=1)
daily_stream_power_exp = xs.variable(intent='in', description="Daily stream power exponent",
attrs={"units": ""},
default=0.75)
threshold_erate = xs.variable(intent='in', description="Threshold erosion rate",
attrs={"units": "m/yr",
"typical range": "similar to uplift rate"},
default=1e-4)
PET = xs.variable(dims=[(), ('y', 'x')], intent='in',
description="Potential Evapo-transpiration",
attrs={"units": "mm/day",
"typical range": "1.5 -> 5.6"},
default=1)
soil_moisture_capacity = xs.variable(dims=[(), ('y', 'x')], intent='in',
description="Dynamic soil moisture capacity",
attrs={"units": "mm",
"typical range": "1-50"},
default=10)
storm_depth = xs.variable(dims=[(), ('y', 'x')], intent='in',
description="Storm depth",
attrs={"units": "mm",
"typical range": "2 -> 30"},
default=10)
daily_rainfall_frequency = xs.variable(dims=[(), ('y', 'x')], intent='in',
description="Mean daily rainfall frequency",
attrs={"units": "1/day",
"typical range": "0.05 -> 1"},
default=0.2)
storm_size = xs.variable(dims=[(), ('y', 'x')], intent='in',
description="Storm size",
attrs={"units": "m^2",
"typical range": "1e7 -> model area"},
default=1e8)
# output variables
erosion = xs.variable(dims=("y", "x"), groups="erosion", intent="out",
description="Incremental erosion",
attrs={"units": "m"})
mean_streamflow = xs.variable(dims=("y", "x"), intent="out",
description="Specific mean daily streamflow",
attrs={"units": "mm/day"})
streamflow_variability = xs.variable(dims=("y", "x"), intent="out",
description="Streamflow variability index",
attrs={"units": ""})
response_time = xs.variable(dims=("y", "x"), intent="out",
description="Catchment response time",
attrs={"units": "ds"})
eta = xs.variable(dims=("y", "x"), intent="out",
description="Ratio of drainage area to storm size",
attrs={"units": ""})
streamflow_ratio = xs.variable(dims=("y", "x"), intent="out",
description="Streamflow ratio",
attrs={"units":""})
critical_streamflow = xs.variable(dims=("y", "x"), intent="out",
description="Critical streamflow",
attrs={"units":""})
# foreign variables
lengths = xs.foreign(SingleFlowRouter, "lengths", intent="in")
elevation = xs.foreign(SurfaceAfterTectonics, "elevation", intent="in")
receivers = xs.foreign(SingleFlowRouter, "receivers", intent="in")
flowacc = xs.foreign(DrainageArea, "flowacc", intent="in")
stack = xs.foreign(SingleFlowRouter, "stack",intent="in")
shape = xs.foreign(RasterGrid2D, "shape")
@xs.runtime(args=("step_delta"))
def run_step(self, dt):
'''
compute erosion, mu, nu, tau, eta, omega, phi
'''
kf = np.broadcast_to(self.k_coef, self.shape).flatten()
PET = np.broadcast_to(self.PET, self.shape).flatten()
s0 = np.broadcast_to(self.soil_moisture_capacity, self.shape).flatten()
alpha0 = np.broadcast_to(self.storm_depth, self.shape).flatten()
lambda0 = np.broadcast_to(self.daily_rainfall_frequency, self.shape).flatten()
ac = np.broadcast_to(self.storm_size, self.shape).flatten()
area = self.flowacc.flatten()
mu, nu, tau, eta, omega = hydroecology(area,
ac, lambda0,
alpha0, PET, s0)
dh, qc = solve(self.elevation.flatten(),
self.area_exp, self.slope_exp,
area, kf,
mu, nu, self.threshold_erate,
self.slope_exp_critical_stream_flow,
self.recession_exp, self.daily_stream_power_exp,
dt, self.lengths,
self.stack, self.receivers)
self.erosion = -dh.reshape(self.shape)
self.mean_streamflow = mu.reshape(self.shape)
self.streamflow_variability = nu.reshape(self.shape)
self.response_time = tau.reshape(self.shape)
self.eta = eta.reshape(self.shape)
self.streamflow_ratio = omega.reshape(self.shape)
self.critical_streamflow = qc.reshape(self.shape)