Skip to content

Commit

Permalink
Deploy dev from 89024af
Browse files Browse the repository at this point in the history
  • Loading branch information
github-actions[bot] committed Feb 6, 2024
1 parent 5aca01a commit 8cef205
Show file tree
Hide file tree
Showing 472 changed files with 68,750 additions and 116,353 deletions.
2 changes: 1 addition & 1 deletion dev/.buildinfo
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: 18603f67385e4801d6d6316f8363f5ec
config: b4f0410e636063c13cfb7aacffde9565
tags: 645f666f9bcd5a90fca523b33c5a78b7
Original file line number Diff line number Diff line change
@@ -1,21 +1,10 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Gridding with a linear interpolator\n\nVerde offers the :class:`verde.Linear` class for piecewise linear gridding.\nIt uses :class:`scipy.interpolate.LinearNDInterpolator` under the hood while\noffering the convenience of Verde's gridder API.\n\nThe interpolation works on Cartesian data, so if we want to grid geographic\ndata (like our Baja California bathymetry) we need to project them into a\nCartesian system. We'll use `pyproj <https://github.com/jswhit/pyproj>`__ to\ncalculate a Mercator projection for the data.\n\nFor convenience, Verde still allows us to make geographic grids by passing the\n``projection`` argument to :meth:`verde.Linear.grid` and the like. When\ndoing so, the grid will be generated using geographic coordinates which will be\nprojected prior to interpolation.\n"
"\n# Gridding with a linear interpolator\n\nVerde offers the :class:`verde.Linear` class for piecewise linear gridding.\nIt uses :class:`scipy.interpolate.LinearNDInterpolator` under the hood while\noffering the convenience of Verde's gridder API.\n\nThe interpolation works on Cartesian data, so if we want to grid geographic\ndata (like our Baja California bathymetry) we need to project them into a\nCartesian system. We'll use [pyproj](https://github.com/jswhit/pyproj)_ to\ncalculate a Mercator projection for the data.\n\nFor convenience, Verde still allows us to make geographic grids by passing the\n``projection`` argument to :meth:`verde.Linear.grid` and the like. When\ndoing so, the grid will be generated using geographic coordinates which will be\nprojected prior to interpolation.\n"
]
},
{
Expand Down Expand Up @@ -46,7 +35,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.11.7"
}
},
"nbformat": 4,
Expand Down
13 changes: 1 addition & 12 deletions dev/_downloads/053858a0efcae8d25a42f2bcf81f25e4/trends.ipynb
Original file line number Diff line number Diff line change
@@ -1,16 +1,5 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down Expand Up @@ -125,7 +114,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.11.7"
}
},
"nbformat": 4,
Expand Down
Original file line number Diff line number Diff line change
@@ -1,16 +1,5 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down Expand Up @@ -46,7 +35,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.11.7"
}
},
"nbformat": 4,
Expand Down
Original file line number Diff line number Diff line change
@@ -1,16 +1,5 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down Expand Up @@ -184,7 +173,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Like :func:`verde.cross_val_score`, :class:`~verde.SplineCV` can also run the\ngrid search in parallel using `Dask <https://dask.org/>`__ by specifying the\n``delayed`` attribute:\n\n"
"Like :func:`verde.cross_val_score`, :class:`~verde.SplineCV` can also run the\ngrid search in parallel using [Dask](https://dask.org/)_ by specifying the\n``delayed`` attribute:\n\n"
]
},
{
Expand Down Expand Up @@ -301,7 +290,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.11.7"
}
},
"nbformat": 4,
Expand Down
13 changes: 1 addition & 12 deletions dev/_downloads/16745cb398e8d7436b94804865fe1fac/decimation.ipynb
Original file line number Diff line number Diff line change
@@ -1,16 +1,5 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down Expand Up @@ -125,7 +114,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.11.7"
}
},
"nbformat": 4,
Expand Down
13 changes: 1 addition & 12 deletions dev/_downloads/2070872514282930d7a0cb271e43740d/trend.ipynb
Original file line number Diff line number Diff line change
@@ -1,16 +1,5 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down Expand Up @@ -46,7 +35,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.11.7"
}
},
"nbformat": 4,
Expand Down
Original file line number Diff line number Diff line change
@@ -1,16 +1,5 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down Expand Up @@ -152,7 +141,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Scoring\n\nGridders in Verde implement the :meth:`~verde.base.BaseGridder.score` method\nthat calculates the `R\u00b2 coefficient of determination\n<https://en.wikipedia.org/wiki/Coefficient_of_determination>`__ for a given\ncomparison dataset (``test`` in our case). The R\u00b2 score is at most 1, meaning\na perfect prediction, but has no lower bound.\n\n"
"## Scoring\n\nGridders in Verde implement the :meth:`~verde.base.BaseGridder.score` method\nthat calculates the [R\u00b2 coefficient of determination](https://en.wikipedia.org/wiki/Coefficient_of_determination)_ for a given\ncomparison dataset (``test`` in our case). The R\u00b2 score is at most 1, meaning\na perfect prediction, but has no lower bound.\n\n"
]
},
{
Expand Down Expand Up @@ -188,7 +177,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Cross-validation\n\nA more robust way of scoring the gridders is to use function\n:func:`verde.cross_val_score`, which (by default) uses a `k-fold\ncross-validation\n<https://en.wikipedia.org/wiki/Cross-validation_(statistics)#k-fold_cross-validation>`__\nby default. It will split the data *k* times and return the score on each\n*fold*. We can then take a mean of these scores.\n\n"
"## Cross-validation\n\nA more robust way of scoring the gridders is to use function\n:func:`verde.cross_val_score`, which (by default) uses a [k-fold\ncross-validation](https://en.wikipedia.org/wiki/Cross-validation_(statistics)#k-fold_cross-validation)_\nby default. It will split the data *k* times and return the score on each\n*fold*. We can then take a mean of these scores.\n\n"
]
},
{
Expand Down Expand Up @@ -224,7 +213,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Parallel cross-validation\n\nCross-validation involves running several model fit and score operations\nwhich are independent of each other. Because of this, they are prime targets\nfor parallelization. Verde uses the excellent `Dask <https://dask.org/>`__\nlibrary for parallel execution.\n\nTo run :func:`verde.cross_val_score` with Dask, use the ``delayed`` argument:\n\n"
"## Parallel cross-validation\n\nCross-validation involves running several model fit and score operations\nwhich are independent of each other. Because of this, they are prime targets\nfor parallelization. Verde uses the excellent [Dask](https://dask.org/)_\nlibrary for parallel execution.\n\nTo run :func:`verde.cross_val_score` with Dask, use the ``delayed`` argument:\n\n"
]
},
{
Expand Down Expand Up @@ -305,7 +294,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.11.7"
}
},
"nbformat": 4,
Expand Down
Original file line number Diff line number Diff line change
@@ -1,16 +1,5 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down Expand Up @@ -46,7 +35,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.11.7"
}
},
"nbformat": 4,
Expand Down
13 changes: 1 addition & 12 deletions dev/_downloads/254ff2dc2633890de3bb07e412fe965b/chain.ipynb
Original file line number Diff line number Diff line change
@@ -1,16 +1,5 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down Expand Up @@ -183,7 +172,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.11.7"
}
},
"nbformat": 4,
Expand Down
Original file line number Diff line number Diff line change
@@ -1,16 +1,5 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down Expand Up @@ -46,7 +35,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.11.7"
}
},
"nbformat": 4,
Expand Down
Original file line number Diff line number Diff line change
@@ -1,16 +1,5 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down Expand Up @@ -46,7 +35,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.11.7"
}
},
"nbformat": 4,
Expand Down
15 changes: 2 additions & 13 deletions dev/_downloads/3f9cd881acef1c5744bb9eb0dfb560db/project_grid.ipynb
Original file line number Diff line number Diff line change
@@ -1,21 +1,10 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Projection of gridded data\n\nSometimes gridded data products need to be projected before they can be used.\nFor example, you might want to project the topography of Antarctica from\ngeographic latitude and longitude to a planar polar stereographic projection\nbefore doing your analysis. When projecting, the data points will likely not\nfall on a regular grid anymore and must be interpolated (re-sampled) onto a new\ngrid.\n\nThe :func:`verde.project_grid` function automates this process using the\ninterpolation methods available in Verde. An input grid\n(:class:`xarray.DataArray`) is interpolated onto a new grid in the given\n`pyproj <https://jswhit.github.io/pyproj/>`__ projection. The function takes\ncare of choosing a default grid spacing and region, running a blocked mean to\navoid spatial aliasing (using :class:`~verde.BlockReduce`), and masking the\npoints in the new grid that aren't constrained by the original data (using\n:func:`~verde.convexhull_mask`).\n\nIn this example, we'll generate a synthetic geographic grid with a checkerboard\npattern around the South pole. We'll project the grid to South Polar\nStereographic, revealing the checkered pattern of the data.\n\n<div class=\"alert alert-info\"><h4>Note</h4><p>The interpolation methods are limited to what is available in Verde and\n there is only support for single 2D grids. For more sophisticated use\n cases, you might want to try\n `pyresample <https://github.com/pytroll/pyresample>`__ instead.</p></div>\n"
"\n# Projection of gridded data\n\nSometimes gridded data products need to be projected before they can be used.\nFor example, you might want to project the topography of Antarctica from\ngeographic latitude and longitude to a planar polar stereographic projection\nbefore doing your analysis. When projecting, the data points will likely not\nfall on a regular grid anymore and must be interpolated (re-sampled) onto a new\ngrid.\n\nThe :func:`verde.project_grid` function automates this process using the\ninterpolation methods available in Verde. An input grid\n(:class:`xarray.DataArray`) is interpolated onto a new grid in the given\n[pyproj](https://jswhit.github.io/pyproj/)_ projection. The function takes\ncare of choosing a default grid spacing and region, running a blocked mean to\navoid spatial aliasing (using :class:`~verde.BlockReduce`), and masking the\npoints in the new grid that aren't constrained by the original data (using\n:func:`~verde.convexhull_mask`).\n\nIn this example, we'll generate a synthetic geographic grid with a checkerboard\npattern around the South pole. We'll project the grid to South Polar\nStereographic, revealing the checkered pattern of the data.\n\n<div class=\"alert alert-info\"><h4>Note</h4><p>The interpolation methods are limited to what is available in Verde and\n there is only support for single 2D grids. For more sophisticated use\n cases, you might want to try\n [pyresample](https://github.com/pytroll/pyresample)_ instead.</p></div>\n"
]
},
{
Expand Down Expand Up @@ -46,7 +35,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.11.7"
}
},
"nbformat": 4,
Expand Down
13 changes: 1 addition & 12 deletions dev/_downloads/4a53c1d8896e7e40f82d2db771321b55/spline_cv.ipynb
Original file line number Diff line number Diff line change
@@ -1,16 +1,5 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%matplotlib inline"
]
},
{
"cell_type": "markdown",
"metadata": {},
Expand Down Expand Up @@ -46,7 +35,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
"version": "3.11.7"
}
},
"nbformat": 4,
Expand Down
Loading

0 comments on commit 8cef205

Please sign in to comment.